
‘

machinecode —
applications sts
for the ZX spectrum

* :

expertmachinecodetechniques = |

Spectrum Machine Code Applications contains
advanced machine code routines to deal with
problems such as floating point numbers, output to the
screen and animated graphics. All the routines are
fully explained and annotated.

Through the application of the host of routines
presented the author explains how successful
machine code roufines are written, tested and used in
practical applications.

This is not another introductory book on machine code
- but an insight into the way a professional machine
code programmer looks at the Spectrum.

Other Spectrum books by Sunshine

The Working Spectrum, by David Lawrence £5.95.
A collection of practical application programs and
UTIITIES. isan 0946408 009

Spectrum Adventures, by ews ares and Roy Carnell.
£5.95. A guide fo playing and writing adventure games.

ISBN 0 946408 07 6

Master your ZX Microdrive, by Andrew Pennell. £6.95.
Programs, machine oo and networking.

; | : |
0946408173 =

IsBN0946408 17 3 _ £6.95

0 CIPS a Bw ue ren = :

xt ‘

a ee oO ROA

D
A
V
I
D

LA
IN
E

S
P
E
C
T
R
U
M

M
A
C
H
I
N
E

C
O
D
E

A
P
P
L
I
C
A
T
I
O
N
S

SU
NS
HI
NE

—

machine code
applications
for the ZX spectrum

expert machine code techniques

david laine

First published 1983 by:

Sunshine Books

(An imprint of Scot Press Ltd.)

12—13 Little Newport Street,

London WC2R 3LD

Copyright © David Laine

ISBN 0 946408 17 3

All rights reserved. No part of this publication may be reproduced, stored

in a retrieval system, or transmitted in any form or by any means,

electronic, mechanical, photocopying, recording and/or otherwise,

without the prior written permission of the Publishers.

Cover design by Graphic Design Ltd.

Illustration by Stuart Hughes

Typeset and printed in England by Commercial Colour Press, London E7.

2

—_

oo Onn un & WwW N

CONTENTS

1

2

3

4

5

6

7

8

9

Introduction

About Programming

Instructions

Number Representation

Addressing

Simple Beginnings

Display Output

Animation

Error Handling and Parameter Name
Passing

10 Floating Point Array Sort

11 Passing other Parameters

12 BASIC Block Delete

13 Setting the Attributes Area

14 Hi Res Graphics

15 Miscellaneous

Select index

Contents in detail

CHAPTER 1

Introduction

Some general hints.

CHAPTER 2

About Programming

The science of programming.

CHAPTER 3

Instructions

Instruction codes and the stack.

CHAPTER 4

Number Representation

Bytes; floating point numbers; multiplication; data structures; signed and

unsigned arithmetic.

CHAPTER 5

Addressing

Direct addressing; direct plus fixed offset; indirect addressing; page

addressing; multiple indirect; chaining; computation of addresses and

instructions.

CHAPTER 6

Simple Beginnings

Execution times; subroutine parameters.

CHAPTER 7

Display Output

PLOT: creating a pixel in the display buffer; EXIT; printing text; printing

numbers; displaying the values of all registers; displaying the free space in

memory.

a

Machine Code Applications for the Spectrum

CHAPTER 8

Animation

GCELL: displaying a sequence of images at a moveable point on screen;

interface; control flags; SEBIT: plotting or unplotting pixels in display

buffer.

CHAPTER 9

Error Handling and Parameter Name Passing

Error return handling; passing variable names; PCALL: setting up

parameter list.

CHAPTER 10
Floating Point Array Sort

A bubble sort; sorting an array of Spectrum floating point numbers; a

practical example.

CHAPTER 11

Passing other Parameters

Formalising multiple machine code entries, value/string parameter

passing.

CHAPTER 12

BASIC Block Delete

Setting up line pointers; continuing with next line; restoring lines.

CHAPTER 13

Setting the Attributes Area

Controls INK, PAPER, BRIGHT and FLASH.

CHAPTER 14

Hi Res Graphics

Drawing a line; drawing a list of lines; undrawing lines; moving cursor;

draw an array; BASIC drawing program.

CHAPTER 15

Miscellaneous

Binary coded decimal; modifications; multiple entry; recursion; machine

code and the assembler; code do’s and don’ts

To the women in my life, living and dead, without whom I would not

have had the strength or encouragement to create the book. Also to my

colleagues in London and Malvern who showed me how to go about it.

“Some books are to be tasted, others to be swallowed, and some few
to be chewed and digested; that is, some books are to be read only in

parts; others to be read but curiously; and some few to be read wholly,

and with diligence and attention’’.

Of Studies

Francis Bacon 1561 — 1626

CHAPTER 1

_ _ Introduction

This book is not intended for the absolute beginner, but for someone who

has used machine code programs from books or magazines and feels the

| urge to try his or her hand.

To those of you who are still interested, this book is not a thesis on the

instruction code or the internal operations of the Spectrum. If you do not
already own one, you will need to obtain a book which explains how the

Z80 functions — most things I shall explain, but some things will be

omitted through over familiarity or because I did not set out to detail them.

I do include a synopsis of the available instructions and their execution

times but have not touched on peripheral programming, the interrupt

vector register nor the refresh register. My purpose is to present an

introduction to machine code programs which can interface with BASIC,

which I assume that you already know thoroughly.

Why should you use machine code?

For total freedom from the restraints of BASIC and an increase in speed.

I have included an array sort routine (Chapter 10) which is about 125 times

faster than its BASIC equivalent (and then show how you can double that).

On the other hand the errors make themselves known that much faster.

For the machine code programs I have used a simple assembler by

Picturesque.

Always remember that if you can see a logical way of solving a problem

then that problem can be solved. The hardest thing for the beginner is

sticking it out, the resolution to persevere until the last error is removed

and the code runs correctly.

Do not, to begin with, attempt more than one or two hours at a stretch,

and do keep notes on your errors. After a few weeks the worst of the nerves

will be over and you will have become well’acquainted with machine code.

For any problem, write down what you want to do and then draw flow

diagrams. If you can’t do a bit of the problem put it in a little box and carry

on with the main problem; later go back and work on the boxes as if they

were full grown problems in their own right.

Finally, never forget: the true programmer exists in one of two states: the

depths of despair because the program is not working, or the highest

elation because it is known why the program is not working.

9

cael

CHAPTER 2

About Programming

‘An engineer was called from afar; the

machine would not work; he pondered
the problem; he called for a hammer; he
dealt the thing a resounding blow; it
worked. Much later the bill arrived:

Transport and travel £50.00
Hitting the machine £00.01
Knowing what and wheretohit £500.00

Total £550.01 (+ VAT).’

(Modernised Apocryphal)

Programming is far more an art than a science. Science is involved, for

the rules imposed by the machine code instructions and any operating

system admit of no flexibility. But the presence of the finest ingredients

hardly implies great cuisine if the cook is a gorilla — on the other hand, a

great cook can conjure a feast from the most unpromising beginnings.

There is constant interplay amongst eight things:

Reliability

Simplicity

Testability

Speed

Size

Documentation

Program environment

Program specification

Reliability

Djikstra’s conjecture:

If a program has N instructions, each having a probability p of doing the

right thing, then the probability of the program doing the right thing is of

the order of p’.

If the program is to loop L times, then the probability is of the order of

p%!, which means that if p is not equal to 1 then the program is not worth

running.

11

Machine Code Applications for the Spectrum

Every fault in a program ought to be investigated, explained and
corrected. A faulty program is not worth running, a misplaced comma has
cost millions before now.

Simplicity

There is no merit in making programs needlessly convoluted. The whole,
no matter how complicated, can always be broken down into a few simple
parts and these parts further reduced to simpler parts. I find that a very
good way to test a program is to draw lines on a listing from jump
instructions to the relevant labels. The results are usually self evident.

Testability

Much has been written about testability; all I shall say here is that
simplicity of structure makes testing that much easier. You can have more
combinations of bit pattern in a mere 40 bytes than there are atoms in the
universe.

Speed

Each instruction takes a finite time to execute and there are always several
possible instruction mixes to produce the same result. If you havea piece of
program which seems to be slow to produce results, examine it for loops
within loops within loops. Improvements in speed may require changes in
data structure which may mean that the program becomes bigger.

Size

‘Anybody can build a bridge, but only an engineer can, just.’
The size of a program is the sum of its two parts — the instructions and

the data area.

Data should never be written into and be part of a program except
(perhaps) in test programs. The program should be given a pointer to the
location of its data and be allowed to work from there.

The number of instructions can nearly always be reduced. The more
straightforward the program construction the easier and more effective the
reduction will be.

Documentation

A program or subroutine without proper and adequate documentation
might as well not exist. You can retain sufficient memory of a piece of a
program for about three months to prompt you, with a listing, as to how
and why and what. Beyond those three months the program becomes a
liability.

12

nd

as

at

re

Chapter 2 About Programming

Documentation does not need to become a magnum opus, just:

List of entry conditions a) registers

b) special locations

List of exit conditions a) registers

b) special locations

c) preserved registers

d) flags set

Brief description of the function

These, together with a listing and flow diagram should be kept in a good

note book with stiff covers. If you can also keep the original source code on

tape so much the better. I use message cassettes myself, they seem to do

quite well.

Program environment

A fancy way of saying what extra peripherals you have beyond the TV

screen. You must always tailor your output to suit. What looks impressive

in flashing, scintillating colour will look very different on a ZX printer.

Program specification

This is left to the end because everything else affects and is affected by it. It

may be necessary to go round the whole loop several times to arrive at an

acceptable compromise.

There are particular aspects which must be considered if you are

producing a program for someone else:

a) Do you understand what he says he wants?

b) Is what he says he wants a true expression of what he needs? Remember

that you and he have to have a common appreciation of the problem to be

solved.

c) Can you see the problem as one of a more general sort that you have

already solved, or, more generally, have you solved something like it

already? Is this problem going to be the first of a series? Would it be better

to write a more general program for future needs? For example, given the

need to integer arithmetic extending over seven bytes, might it not be better

to devise general solutions extending over N bytes and then set N to 7 for

the specific case?

d) If the problem is a large one, time spent designing the data base can

repay vast dividends in time needed to extract data. All the data referring to

a major item should be stored together so that it can be got at through a

single page register. Different settings of the page register are then used to

point to different data items.

13

Machine Code Applications Sor the Spectrum

e) When you have a solution scheme worked out you will also have some
questions to ask, so go back to a) above and start again.

TS TPE SERRE NE

SERED CIEL MN BF PRETEND OE

14

ne CHAPTER 3

Instructions

The instruction codes and their actions on the flags are given condensed

form in Figure 3.1 and Figure 3.2 together with their allowed address

combinations. These tables are no substitute for the books mentioned in

Chapter 1.

Form of Figure 3.1

column description

1 operation mnemonic

2 symbolic operation

3 allowed address combinations (where two addresses are

allowed the two groups of possibles are separated by a space).

The numbers under some of the addresses indicate the execution times of

the associated operation (in computer clock cycles).

N indicates that a 1 byte value may be used

NN indicates that a 2 byte value may be used

(NN) indicates that the address of a byte is to be used

d is a 1 byte page offset to be used with a page register

DISP __ is the displacement to a nearby instruction

The stack

The stack is a concertina-like list which stores items in a first-in first-out

(FIFO) form. It is like a pile of cards — the first one you place on top is

the first to be removed, but to confuse matters it is held in memory

‘upside- down’. The top of the stack (ie where the last item added is) is at

a lower address than the bottom (ie where the very first item lies). The

Stack Pointer SP is a 16-bit register which points to the address of the

last item on the stack.

Normally the stack is used for storing return addresses from

subroutines, in the form of a pair of bytes, and a CALL puts a pair on

the stack (and decrements SP by two), and a RET will remove it (and

increment SP by two). However, there are two other types of instructions

that use the stack — PUSH and POP. When a 16-bit register is PUSHed

15

Machine Code Applications for the Spectrum

Figure 3.1a

CODE | OPERATION ADDRESSES - CONDON CODES - REGISTERS AND beh 43-3 mites

AtA+S+Ly AlB/C[DE|H/LIN] (HL) |(ix + a] (Ved)
ADC 4 te ee 9

HL*HL+$+¢y | HL BC]DE|HL|SP
: bee cinta =

A Al8)¢/D/E] HILIN JL)
4

AL BC/DE/HL/SP
oon

1x BG/DE/1X|SP
—|—)

iv BG] DE|IY}sP
; Si raan Um 2
Bao. SE ae -

bedhead | dL ene LL

sea nb NN

(0 i& Nor’ OBEYED)
NN

>

CALL

— AS]B/e DIE PAILIN ie aICY ‘SEB ALSO CPD CPDR FLAGS} A= A eae xe aie eee es es CPL CPIR
cA AeA Ud 4
DAA
DEC

bI

SEE TR BELOW

EI | ENABLE INTERRUPTS — USES NON-MASKABLE INTERRUPTS
GPs 5 (SP) swLyixny

aqe23>
: AB Ar’
oi ons

DE HL
: Rad

BC Ss Be!
€xx | DES DeE'

HL SS HL' 4 -
es ETS

ser
1M INTERRVPT | Of 1/2°

MODE =e :
S¢ input) | alelcjojejaie i? SEE ALSO IND INDR Ww — 2 F3,ld INT INIR Ae INPUT AN) | A (ay) ul _READ PERIPHERAL PORT

Wwe AlBIC| DE] H; Neabae Vonor Me ULGT® y alae

Chapter 3 Instructions

Figure 3.1b

Pee $s CAL) XY) INN
ae €4-%— 8 —% 109

Poe $ IF] GCING|Z/NZ]M|P)/PE|PO NN
|g —

DISPLAZEMENT ABS (DISP) 127 PC POINTS TO NEXT OP
rice

INCIZINZ
—s OR 7 IF NOT OBEYED

PCH PE +DISP

Po & PO +dDGP

iF ce

Aa MQLOn)| bilgi

Ap|clD/E lai A[aic{ole)ajL)n
4a

AlB)cole]H |i QUjlOxsapidired

— Bc] DE) HL)SP Nn{(wn)
: 1o* 20 SEE ALSO LDD LDDR

Lb : FSid LbI LDIR
— ixjtY vee

LOAD Les
a 1st ADDRESS sp Huyixity

wir 6109
aappRESS | (HL) NdICDRNKIN.

(e)I@e)) 4
a (x+ a)iCiy+d) arate

(nn) eae ML x}ty |SP

— rR a

a fAs-a__| 8
NOP 4

OR ALBICIDIE)AILIN Nix +diC'y+a) is eager

a ourPpuT S (c Aleiciolelvi.
TO ADDR. BC <—12——> SEE ALSO OUTD OTDR

out F3,id ouTL OTIR
OUTPUT A

a TO ADDR. An | (N) 4

a READ OM OP) ariacibe|we|ixiiy
ner on 6P+2 —10 14>

x cies
O]1}21314/5)6]7 AIBICIDIEIMIL IHX atv ra)

10

CING|z| Nz] M]P|POlPE

— ED
5 wor c@eveD

AIBIC] DIE] HILI(HL IX +4) AY +d SEE 5,2 Ri 2 1B/c} DI 1H] ig AC aK)

4 SEE F3,2 Ri

17

Machine Code Applications for the Spectrum

Figure 3.1c

i ric |ROTATE RIGHT | A/BIC|DIE|HILI(HL)|(Ix +d)](1¥+ 4) SEE F3,2 R2
ti ——3 75x25 >

i RLCA 4 SEE F3,2 R2
ROTATE LEFT RLD | AND (HL) 18 BCD A AND (HL) NIBBLES SEE F3,2 RS

iy RR |ROTATE RIGHT | AIBIC|DJE|H|L)(HL)I(IX+d))(I¥+ 4) SEE F3,2 R4 ‘| tN eareaccde . Summa Samet
11 RRA | ROTATE A RIGHT] 4 SEE F3,2 R4
14 ROTATE RIGHT | A|B/CIDIE|H]LI(HL)|(Ix +d)((I¥+d) SEE F3,2 R5 i roc [rormner | QE ag

RRCA 4 SEE F3,2 RS
| ROTATE. RIGHT RRD 18 BCD A AND (HL) NIBBLES SEE F3,2 R6é

RsT | STACK Po Ol 8/16 124)32]40]48|5¢6 FOR JUMPS TO HEAD OF ROM
PC< S i nee jaa R
A€A-S-Cy p A|BIcID|E)H]LINI(HL)I(1X+d)I(ly+d)

i SBC —_9—-J a —- 11
j HL€ HL-S -Cy BC|DE|HL|SP
4 — |p

Scr “
i Sp< 1 O} 1/2|3)415]6]7 A|BIC]D)E}HIL]CHL)I(1X +a) (IY +d) eee eee

Sia | SHIFT LEFT A|BIC|D]E}HIL|(HL)|(IX+ d)I(ly +d) SEE F3,2S1
ARITHMETIC ene Bae

SrA | SHIFT RIGHT AIBICI DIE] HIL| HL)(IX+d)I(Iy+d) SEE F3,2S2
il ARITHMETIC = ee ee
i SRL | SHIFT RIGHT AIBICI DIE] HILJCHL)I(1X+ d)ILl¥+d) SEE F3,2 S3

im) | LOGICAL oS

A<A-S AIBIC|D]E]H]LN |(HL)I(IX+d)|(1Y+d)
! - —_—4—_——- x7 —_ 1
|

XOR AIBIC|/DIE[H] L]NI(HL)I(IX +a)I(1Y +d)
<— 4. 7 J

ERT RI

18

Figure 3.1d

cPD

CPI

CPLR

Chapter 3 Instructions

BLOCK ano REPEAT LOAD AND COMPARE
FLAGS « A-(HL) | COMPARISON CP
HL© HL-1
Bc< Be-1

HL€ HL+1
Bc¢e Bc-1

HL<© HL-1
BC+ BC-1 REPEAT UNTIL A =(HL)

OR Bo=g

ALL COMPARISON INSTRUCTIONS
LEAVE THE A REGISTER UNALTERED
BUT JUST SET THE FLAGS ACCORDING
TO THE SUBTRACTION.

D ORI REFERS TO DECREMENTING
OR. INCREMENTING THE CONTENS OF HL.
IN ALL CASES THE BC REGISTER PAIR
IS DECREMENTED

HL© HL+1
CPDR | BC < BO-1 REPEAT UNTIL A =(HL)

OR Bc=9

LDL

LDOR

LDIR

IND

INI

INDR

INIR

OuTD

OUTIL

OTDR

OTIR

LOAD

DE< DE+1
HL© HL+1

Bo< Be-1

DE< DE-1
HL€ HL~-1
Bc Be-1

DE < DE +1
HL© HL+1
BC Bc-1

REPEAT UNTIL BC =

REPEAT UNTIL BC=4

(HL) < (c)
B<€ B-1

HL <€ HL-1

B<¢ B-1
HL© HL+1
B+ B-1
HL HL-1 REPEAT UNTIL B = @

B< B-1
HL€ HL4+1 REPEAT UNTIL B=

(Cc) (HL)
Be B-1
HL€ HL-12

Be B-1
HL€ HL+1

Be B-1
HL ¢ HL-1 REPEAT UNTIL B=

Be B-1
FHL < HL+1 REPEAT UNTIL B=

DECREMENT AFTER EXECUTION

DECREMENT AFTER EXECUTION

BLOCK anp REPEAT ineut/ourPut

BC CONTAINS (INPUT) PORT ADDRESS, HL CONTAINS DATA ADDRESS

DECREMENT BEFORE. EXECUTION

DECREMENT BEFORE EXECUTION

BC CONTAINS (OUTPUT) PORT ADDRESS, HL CONTAINS DATA ADDRESS

DECREMENT BEFORE EXECUTION

DECREMENT BEFORE EXECUTION

19

Machine Code Applications for the Spectrum

Figure 3.2

20

FIG SHIFT AND ROTATE OPERATIONS

RE 7Té[s[4]3]2]']o
LARPS?

7[e[s[+[s[2[fo

R2 fey] [7] e[s]4[3[2]' [o] [oe]
PLLLLLL

RL,RLA

RLC,RLCA

A (AL) —————>

RRC, RRCA

~~
[7[é[5]4[3[2]: Jo]

A —— (H

Re [7Je[s]+]s[2[' Jo] [7]e[s][4[3]2] 1 Jo] RRo

i 7/6/54] s]2]'[o] »
oO BLOG A

52 [es] [z[e[s]4]3 [2] Jo! oe
b> EARN
[7/6/s5]4[32]: Jo]

83g [zJe[s|4I3[2[Jo) —
SS

7/6]/s]4[sf2]i fo]

Figure 3.3

FLAG SETTING INSTRUCTIONS

ARITHMETIC
8BIT ADDA,r; ADC A,r

SUB r ;,S8Cr

cP r

NEG

\6BIT ADD

ADC

SBC

LOGICAL. AND r
OR r ;xXORr

CPL

ROTATE RLA 7RRA

RLCA =; RRCA

RL rt >. ARs

Ricr ;RRCr

SHIFT SLAr ;SRAr

SRLr

BITEST BIT br
YO TRANSFERIN 1, €)

INI 7 IND

OUTI ; OUTD

INIR ; INDR

OTIR ;OTDR

BLOCK
MOVE LDI ; LDD

LDIR ; LDDR

SEARCH CPI ; CPD

CPIR ;CPDR

QTHERS CCF
DAA

DEC r

INC r

LD A, 1
LD A,R

RLD 7, RRD

SCF

Chapter 3 Instructions

FLAGS (IN F REGISTER)

[s{z] [| |PvIN [cy] COMMENTS

FLAGS SET FOR A-r

FLAGS SET FOR A=-A ** x ¥ a a

*

*
*

*

¥
*K KKK * <<

| eel k * kK KK K

*

AzA

g || ROTATE A
@ @|%*| ROTATE A AND Cy

|% @ @|| ROTATE R
| @ @|%| ROTATE R AND Cy

BIT B OF r PLACED INZ

x

Me BLOCK 1/0
1 $=0 IF B#¢9

$=1 IF B=@
1

¢ g 4¢ SET IF BC=1
© @
* 1 $ SET IF A = (HL)
* 1 ; # SET IF BO=1

g Cy =Cy
%1% * P ADJUST RESULT TO CONTINUE
¥ | % * via BCD ARITHMETIC

*/% ¥ Vi@
| @ $|@ Be INTERRSPT ENABLE FLIP
| * @ $|@ FLOP IS MOVED To P/V
*| % @ P|@ LEFT AND RIGHT BCD ROTATE

@ g

NOTES ON THE TABLE

UNSET
SET

P/V SET AS A

DSONOMHS WH

g
1
P

Vv
*
b
a

$
. Ss

NO SYMBOL ~ NO ACTION

P/V SET ACCORDING TO PARITY OI RESULT
RESULT OF OVER~- OR UNDER - FLOW

MAY BE SET OR UNSET
1S A BIT NUMBER @ (1)7
A SINGLE REGISTER OR A BYTE VALUE

3 SEE ADJACENT COMMENT

21

Machine Code Applications for the Spectrum

its two bytes are put on the top of the stack, and SP decremented by two.

The opposite is POP which places the values of the top two bytes on the

stack into a 16-bit register. SP is then incremented by two.

Repeated PUSHing will eventually reduce SP until it starts to

overwrite your program or data, and unfunny things will start to happen,

usually resulting in a system reset.

As-long as POPS and PUSHs are kept in step the SP pointer will not

‘run away’; usually 200 or so bytes are sufficient but with deeply nested

subroutines and more advanced programming than is dealt with in this

book you will perhaps need more. Remember that the higher you set the

head address of your program the less room there is for the stack.

If POP and PUSH become unbalanced over a subroutine then, in

general, the subroutine cannot exit correctly (a very common beginner’s

problem). However, if on entry to the subroutine, you store the SP value

in some address (which the stack is not going to over-write!), you can

always exit correctly from the deepest level of nesting, by resetting SP

from the stored value and executing a RET instruction, eg

GRAFS LD (ADDR),SP

EXIT LD HL,(ADDR)

LD SP,HL
RET

Everything that was left on the stack still exists but is just abandoned

and will be overwritten by subsequent PUSH operations.

22

two.

n the

s to
pen,

| not

sted

this

t the

1, in

1er’s

alue

can

y SP

ned

CHAPTER 4

Number Representation

‘When J use a word,’ Humpty Dumpty

said, in a rather scornful tone ‘it means
just what I choose it to mean — neither

more nor less.’
‘The question is,’ said Alice, ‘Whether

you can make words mean so many
different things.’

‘The question is,’ said Humpty
Dumpty, ‘which is to be master — that’s

all ’

(Alice through the Looking Glass)

Given the content of any byte very little can be said about it except its value.

Its meaning depends on the programmer or program which gave the byte

that particular value.

Example 1

If the byte is a copy of the F register (FLAGS) then you must refer to Figure

3.3 and even then you may need to work back through the program to

determine which operation on what data set a particular bit.

Example 2

It may be part of a Spectrum standard floating point number (see Figure

4.1). Before you can assign a meaning to the byte you must determine

which of the five possible bytes it is.

Example 3

It may be one byte of a 16 bit integer — again which byte?

Example 4

It may be a genuine byte value such as an ASCII character code or a

Spectrum token, in which case the meaning can be determined by

inspection of Figure 4.2. Note that when and if you use an RS232/V24 type

of interface you will almost certainly need to insert transmission control

codes and may also be required to set or unset the MS bit of each ASCII

character according to the parity required by the peripheral.

23

Machine Code Applications for the Spectrum

Figure 4.1

|

|

OLI/b91
d

IWANWW
W
R
u
I
d
s
S

Aas

O
W
L
S
I
V
A
L
I
D
V
Y
Y
H
D

A
H
L

s
s
a
y
a
a
v

3
0

A
L
A
G

S
W

S
H
L

30

9

+
2
4

U
G

HY
IH

N
a
S
M
L
3
g

$1

IN
id
d

A
U
Y
N
I
G

S
H
L

D
I
L
S
I
M
A
L
O
V
Y
V
W
H
I

A
L
A
S

F

ss
au
ad
y

| ge
en

| LWENOdXa

H
E

5 |
 P
g

B
a
e
.

24

Chapter 4 Number Representation

Figure 4.2

< BYTE. >

Warne [ele lt isl2 1°
ITABLE! ROW !COLUMN |!

ASCII CODES SPECTRUM TOKENS

TABLE 1
% THESE CHARACTERS ARE

NATIONAL VARIABLES

25

Machine Code Applications for the Spectrum

Example 5

It may be (part of) an instruction code. If you start off in the wrong place

the result will be gibberish.

There is no way of knowing, from the byte alone, what it is. If, however,

the location of the start of the machine code program can be determined
the rest of the program follows logically and in running is all sorted out by

the hardware.

Floating point numbers (see Figure 4.1)

Read the Spectrum manual pages 169-170. What follows is a note on

manipulating fp numbers.

The Sign of the characteristic is in the lowest addressed byte.

When working with fp numbers, always adjust the size of the exponent

such that the bit after the characteristic sign bit is the inverse of the sign bit;

that is, the characteristic begins either 01 or 10, never 00 or 11.

To add or subtract fp numbers, first adjust the exponents to be the same

(shift the characteristic of the lower fp number right as its exponent is

increased) then add or subtract the characteristics as required and correct

the exponent for over- or under-flow if need be. This shifting to equalise

exponents is known as normalisation.

Multiplication and division of fp numbers

1 Don’t, unless you have to.

2 Ifyoumust * a) add or subtract exponents
b) multiply or divide the characteristics

or c) get the BASIC to do it for you!

Data structures

Data structures can be as simple or complex, long or short, as you wish, can

unravel and can find room to handle. Each set of problems has its own

solutions.

Suppose that much alpha-numeric data has to be handled, we have A—z,

A-Z, 0—9, space and punctuation. If we introduce a shift character to

distinguish between upper and lower case and put digits in the opposite

case to punctuation, then the whole can be squeezed into 40 separate codes.

Now 40 * 40 * 40 = 64000 and 16 bits in two bytes has a maximum value of

65535. For the price of some coding we can get three characters where there

were only two before — an increase of 50% in the available storage.

Again there is another scheme: there are 26 * 26 = 676 letter pair

combinations, aa, ab, ac, ZX, Zy, ZZ, by no means all of which exist in

English (or any other language for that matter). It may well be that in a

particular application, less than 256 such pairs exist; in such a case the

26

on

Chapter 4 Number Representation

input may be coded at two letters per byte with a resulting doubling of the

storage capacity.

If we are handling large arrays of numerical data, whose entries are

mostly empty (the so-called sparse arrays) we may have to design

techniques for handling the data, not as arrays, but in terms of the non null

elements and their locations. This will be slow but at least we will be able to

handle the problem.

Signed and unsigned arithmetic

Signed arithmetic uses the MS bit of the value to indicate the arithmetic

sign of the remaining bits. In unsigned arithmetic you keep track of the

signs of the values of the variables. Usually it suffices to ignore the sign bit

as is done in addressing (but keep an eye on the carry flag).

27

CHAPTER 5

Addressing

Addressing refers to the method by which data or constants stored in

memory are read into the Z80 registers, and is a very important concept.

The Z80 has many modes, some more useful in certain applications than

others.

Be very clear in your own mind whether you are using 8 or 16 bit

variables. Addresses are always 16 bit values and refer either to a byte or

the lower of the two bytes used for a 16 bit value (but remember that in the

BASIC program area the Spectrum system has line numbers swapped

around).

There are several methods of getting at data: some are outlined below:

Direct

The location is known and has a name or numerical value.

eg LD HL,(23626) will put the contents of 23627/8 into the

HL register pair.

LD A,(23627) will put the contents of byte 23627 into

the accumulator or A register.

Direct + fixed offset

At run time this is identical to the direct method.

eg LD B,(PHRED +5) PHRED is a value determined by the

assembler at assembly time.

With most assemblers the address can be generated from any mixture of

labels and values together with + and — signs. Also a label may be

assigned a value rather than having a value determined for it by the

assembler.

Indirect

The address of the required data is held in some known location.

eg LD H1,(PHRED) HL is loaded with the address.

LD B,(HL) B loaded with the byte addressed by the

content of HL.

29

Machine Code Applications for the Spectrum

Page addressing

Page addressing, also known as Indexed Addressing uses two 16 bit

registers — [X and IY. A page in this context is an area of not more than 256

bytes whose head address is loaded as a 16 bit value in the IX (or IY)

register. There are assumed to be several such pages, all laid out in the same

order, each containing data for an individual item — see Chapter 10 for an

example. Data is then handled by means of fixed offsets relative to the head

of each page.

eg LD A,(IX+5) will load A with the 6th byte of the page

pointed to by the address currently held

in IX.

The method becomes more transparent if the fixed offset is given a name

indicating the contents. Consider processing examination results. Each

student is given a page, organised thus:

BYTENO. CONTENTS

0

Student No.

1

2 Marks Mathematics

3 beet English

4 hrs Physics

5

6

ger oF

We can then code: LD A,(IX+ PHYSICS) so long as we have let the

assembler know that PHYSICS has the value 4. To load HL with the

student’s number we have to code:

LD L,dxX+0) to load the low order byte

LD H,(IX+1) to load the high order byte

To move on to the next student we need only add a suitable constant to

the page register. Page 180 of the Spectrum manual says that the IY register

should not be used, but this is not strictly true. Although its value should

never be altered, it is always set to 23610, and it can be used to access some

of the system variables. For example, to set bit 1 of FLAGS the instruction

would be

SET 1,(1Y +)

30

Chapter 5 Addressing

Multiple indirect

If we have access to only the address of the value, we have to repeat the

process used to extract an indirect address. There is no theoretical limit to

the depths to which one can sink in this process though I should consider it

unreasonable to attempt more than three levels of descent.

Chaining (see Figure 5.1)

This is a method of linking (usually blocks of) data together so that a rapid

search can be made. Chaining requires that each data item carries with it

the address of one or more related data items. These addresses are known

also as pointers. Chaining can be forward, backward or both together. The

deletion of an item from a chain is accomplished by pointing around it, an

item not pointed to does not exist.

It is usually necessary to produce a ‘garbage’ collection routine to

reorder data and physically remove deleted entries from chained data.

Note that several independent chains can link through the same data (so

long as pointer space is supplied).

The Spectrum BASIC program is a part forward chain. Each line carries

what amounts to a pointer to the head of the next line. Forward searching is

easy, backward searches (such as GOTO... a previous line number) are

fresh searches from the beginning.

Computation of addresses (and instructions)

When working with a variety of addresses, it is sometimes tempting to

construct the address (or instruction), enter it into the code and then obey

it.

This technique is not to be recommended, but may be tolerated,

especially where speed and size are of importance. I do use it and all I shall

say is ‘be careful’. Remember also that you cannot use the technique if the

program is going to be loaded into a PROM or ROM.

Notes

1 Only use it in subroutines, never the ‘main line’ of a program.

2 On entry to the subroutine, be sure that you know what the sate of

any computed instruction will be. Never compute an instruction for

‘next time round’.

3 Be very aware of how the assembler you use assembles the

instructions that are modified — some instructions can be assembled

in different ways:

eg LDHL,(NN) can be coded (hex)

2A—nl-n2

or EX-—6B-nl-n2

31

N ¥3.LNIOd

YSISILNIGI!
WALI

—N¥Y3LNIOd

L
—
N
W
a
3
L
I

V
i
v
a

SINS LI
S
N
O
I
A
3
Y
d

OL

O
N
I
N
I
V
H
D

G
Y
V
M
A
D
V
E

@uy3LNIOd
W3.LI

LXSN
OL

YSLNIOd
AS

Y
S
N
U
V
W

G
N
3
S
O
V
I
d
S
Y

S
W
S
L
I
G
G
V
O
L

=
 =—t—“—isCs/

(L

+N
)

4a
3u
Io
d

Aq

@s
aj

ui
od

ay

44
ma

s
@
W
I
L
I

3
1
3
7
3
0

OL

Y3
IS
IL
LN
Id
I

W
L
I

@uy3LNiOd

Ow3.l viva

@YALNIOd
Ow3.Ll Viva

(L—4) WALI

Viva

SW31LI
YSHLYNSA
OL

N Loe)

Machine Code Applications for the Spectrum

Figure 5.la

S
N
I
N
I
V
H
D

G
Y
V
M
u
y
O
s

O
N
I
S
S
A
Y
O
G
d
V

Chapter 5 Addressing

Figure 5.1b

WALI viva

S
O
N
I
N
I
V
H
D

A
I
d
I
L
I
N
W

Ss Y F i N | Oo d

YSIsSILLN3GI

‘WALI

SNISSAYGGV

33

Machine Code Applications for the Spectrum

(The code examples in this book, to the best of my knowledge, use an

assembler which produces the shorter of two equivalent forms.)

4 Ifyou label the instruction, then the label has the address value of the
first byte.

5 Remember, when you document or publish the code, to draw

particular attention to what you have done. Another person’s

assembler may use the other assembly option or you may change
assembler.

34

s¢ an

f the

jraw
on’s
ange

CHAPTER 6

Simple Beginnings

Introduction

This chapter deals by example with two essential aspects of machine code
programming; execution times for a piece of program and the passing of
information into subroutines. I also attempt to give some insight into the
way in which solutions develop. I regret that I know of no way in which
years of experience can be grafted into the beginner. As you gain
experience look back over your earlier efforts and wince, the more you
wince the more you have learned.

Clearing the display buffer; an essay on execution times

Anelementary routine to clear the 6144 bytes of the display buffer, starting
at 16384.

My first thought was along the lines of:

LD BC,6144 1
LD HL,16384 2

CLRE LD A,0 3

LD (HL),A 4

INC HL 5

DEC BC 6
LD A,B zt

OR c 8

JR NZ,CLRE 9

which works, but is most inelegant.

Note, however:

a) Lines 7, 8 and 9 as a means of testing BC = 0 since a double register DEC
or INC operation affects no flags.
b) Instructions 3 and 4 can be amalgamated; I forgot that LD (HL),0 is a
valid byte instruction.

The loop 3/4 to 9 requires 37 clock cycles (see Figure 3.1) and is executed
6144 times to give a requirement of 227300 clock cycles. Can we do it
faster?

35

Machine Code Applications for the Spectrum

Version 2

LD HL,16384 = 1

LD C,24 2)

LIN3 LD B,0 3

LIN4 LD (HL),0 4

INC HL 5

DJNZ LIN4 6

DEC Cc 7

JR NZ,LIN3 8

The inner loop, the main time consumer in any such routine, requires

6144*29 = 178000 clock cycles, which is some 78% of the requirement of

the first attempt.
There are however problems if and when one wishes to generalise the

solution which depends on 6144 being equal to 24*256: and are B and C

correctly set up for the DEC and JR operations?

We haven’t come to the end of the road yet. What we have tacitly done is

to load the same location into successive locations. Suppose we cleared

location 0 and then moved location 0 into location 1, and then moved

location 1 into location 2 etc. Put another way what happens if we used the

LDIR operation:

LD HL,16384 = 1

LD DE,16385 2

LD BC,6143 3
LD (HL),0 4

LDIR 5

and everything is done by LDIR 6143 times at 21 clock cycles a time. The

time is thus 129000 cycles, or 57% of the first attempt.

If we attempt to put all the variables into parameters and make a fully

fledged subroutine out of this, to be fully general, we will have all the

complexities of picking up the parameters. Just now this will be more

trouble than it is worth.
With a minor change to line 4 we make a clear display subroutine CLRD

(Listing 6.1) which we enter with A=0 and record that all registers are

destroyed.

Setting up the attributes area

A straight crib is in order here, just change the values assigned to HL, DE,

and BC and give the routine a new name, SETA, which is entered with A=

required attributes byte.

36

Listing 6.1

1235 CLRD
1340
1345
1350
#355
1360
1365
1370

“8 1375
of 1380

izes
le 1290

is

d Listing 6.2
d

0745 WALT#

O746

0747

O748

O7F749
O7350

O731

0/752

e Os4>

0754

y O7355

e 0756

e o7357

0760

O761

0763

O7&3
O7 64

07465

LWATT

LWATU

Chapter 6 Simple Beginnings

HL, 16384
DE, 16385
BC, 4143
(HL) ,O

37

Machine Code Applications for the Spectrum

I make no claim that the routines in this book are anywhere near

minimum execution time or minimum length. Two or three people in

competition should be able to make significant savings in time and space in

most of the subroutines.

Wait and the passing of data into subroutines

When working with a machine code program, it is quite easy to execute

output to the display faster than it can be displayed — certainly far faster

than it can be comprehended. We need a routine that slows things down.

Going back again to the CLRD routine yet again, the LDIR operation is

fairly slow. If it were entered with HL = DE and BC =0 it would consume

65536*21 clock cycles or about a + second at an 8 Mhz clock rate. So we can

code the WAIT routine (Listing 6.2 and 6.3) taking care to save all the

registers and restore them afterwards so that we can insert CALL WAIT at

any point we wish without disrupting things.

If we want a still longer wait we can put a call of WAIT inside another

loop to get a wait of 60—70 seconds (routine LWAIT).

While we are dealing with the WAIT function, it is often an idea to be

able to wait until a key is pressed, and while we are doing this we can set

specific key options (for use later on with data entry, cursor movement,

games etc.).
The answer to ‘how?’ is in location 23560 of the Spectrum variables

area. This contains the code for the last key pressed. Remember the

Spectrum interrupt system is running all the time your routines are

working, (you are, in jargon, time sharing with it), so we can just loop,

reading 23560 until the code we want appears.

There are two problems to be answered

a) How do we form the list?

b) How do we tell the routine where the list is?

Commentary

The list must contain two things, a character code and an address to be

accessed when that character is met. Some assemblers do not allow an

address to be put into a list and the address may be so far away that a

relative or displacement jump may not be used. An entry in the list must

look like:

Character code

JP ADDRESS

What about the length of the list?

We could work out the length of the list beforehand and pass it into the

routine in a register, but if we want to add or delete list entries this must be

38

he

be

Listing 6.3

O520

O525

OS30

O3535

O540

o545

O550
OSS5
O3560

03565

o870

OS75

O35B0

O385

OS9O

O3595

0600

0605

0610

9615

0620

04625

0630

Q4635

0640

0645

0650

0655

0660

665

0670

0675

0480

0685

0690

9695

PAUSE

PAUS 1

CHARS
LASTE
PEK EN.

TED

NXBYT

MATCH

Chapter 5 Addressing

AF
BC
DE
HL.
A, (LASTE)
oO

Z,FAUS1
(CHARS) ,A
A,o
(LASTE) ,A

2odaQ
HL.

HL.
A, (LASTE)

O

Z4 FREY.

B

Z, MATCH

DE ,4

Hi DE

NABYT

HL.

BC
B,A
A,®

(LASTE) ,A

CHL)

39

Machine Code Applications for the Spectrum

Flowchart 6.1

IFKEY WAIT FORA (SPECIFIED) KEY TO BE PRESSED

IFKEY

LOAD HLFROM STACK (T0 GET HEAD OF
RESTORE STACK PARAMETER LIST)

WAIT FOR A KEY

INTO A (LAST KEY PRESSED)

THIS LOOP

A =(HL)READ CHARACTER
POINTED 10 BY HL

NO

@ MARKS THE END OF THE PARAMETERS
SO GO BACK AND CONTINUE WAITING

CHARACTER MATCHES
ENTRY IN LIST

MOVE HL TO POINT TO HL=HL+1
oP POPTO MIMIC ACTION OF RET ON STACK
INSTRUCTION IN LIST SET LASTK =@ (FOR NEXT ENTRY)

EXECUTE JP (HL) TO GO TO ENTRY IN THE UST
WHICH MUST BE. THE INSTRUCTION
TO LEAVE THE LIST

EXIT

Chapter 6 Simple Beginnings

changed as well. A better way is to sacrifice a character code and mark the

end with that. I use 0 as it is unused anyway and is easily tested for.

The list now looks like:

Code 1

JP ADDRI

Code 2

JP DDR2

nop

A form of the list has been settled, how do we tell the routine where it is?

There are two schools of thought here. One says that lists and suchlike

constants should be kept neatly segregated in a section. The other says that,

as far as possible, all the constants should be found reasonably close to the
routines which require them.

I tend toward the second school in this instance, as any routine becomes

more rather than less self documenting. So, if we call the routine IFKEY

(which tends to be self explanatory) its use could look like this:

CALL IFKEY
DEFB “A”
JP AREAD
DEFB “+”
JP INCR

(DEFB puts a character code in the code). The call of IFKEY hangs the

program until either the A key is pressed (in capital shift) or the + key is

pressed (in symbol shift).

How do we get the list into the routine?

The top of the stack contains the return address of the sub-routine, so it

' points to the code for ‘A’ in the above example. To read it we simply pop it

off the stack into a suitable register. IFKEY, you will have realised, is

called as a subroutine but does nof return to the calling program through a

RET instruction, which requires an extra pop action to match the push

action of the CALL operation.

Synopsis

CLRD clears the display.

IFKEY waits until one of a preset list of keys is operated.

WAIT causes a (roughly) + second pause.

LWAIT _ causes about a one minute pause.

41

CHAPTER 7

Display Output

The only real way for the Spectrum to communicate with its user is via the
TV display, so it is very important to be able to do this. I will firstly present

the necessary calculating routine, followed by a full character output
program.

To output to the TV we must first be able to locate a pixel in the display

buffer. From this routine we go on to write ASCII characters, display text

strings, display octal numbers and report the contents of the registers.

Along the way there is an introduction to the idea of ‘global variables’.

PLOT: locating a pixel in the display buffer

‘The display file stores the television picture. It is rather curiously laid

out...’ Spectrum manual Chapter 24 p 164.

In all these routines the origin of the display is the top lefthand corner of
the display area.

The display is divided into three sections, each of eight text lines (64 lines

of pixels). There are 256 pixels per row — 32 bytes hold the data for 1 row, a

bit set is an ink dot. The next 32 bytes after those for row 0 hold the data for

row 8, and the next 32 byte block holds the data for row 16 and so on for the
first third of the screen (see Figure 7.1a).

From this we can deduce that a horizontal position (or x coordinate)

specifies a single bit in one of the 256 bits of a 32 byte block.

Stage 1 is then to take the x value in one byte and then use the three least

significant bits to point to a bit in some byte. The remaining five most

significant bits specify which byte in the 32 byte block is involved.

Stage 2 is to determine which of the 192 blocks of 32 bytes is involved.

This must be deducted from the vertical position (or y coordinate). From
Figure 7.1a we see that:

Row 0 uses block 0

Row 1 uses block 8

Row 2 uses block 16 etc.

This may not give much inspiration, written like this, but remember that

we are dealing with a computer and if we think in binary or octal we may be
better off.

43

Machine Code Applications for the Spectrum

Figure 7.1a

8 SCREEN LINES
1 TEXT LINE

O

(ae el GARE ee it GR eae 1. Ss ae aA : 3S eae

|

TELEVISION SCREEN

|

ea st ll i a rick

192 LINES

DISPLAY MEMORY 52 BYTE BLOCKS 192

°
N

Chapter 7 Display Output

Figure 7.1b

TaXid QL YNLLNICd

(LId

SW

WOUd)

4
LID a

v
g

4
S
S
5
5
n
g

A
V
I
d
S
I
D

4
0

A
M
O
W
A
W

NI
S
S
F
U
A
d
V
—
—
>

+
 S8S9T

ly
SLYWLS

HIIHM)
4
8
¢
9
1

¢

Y
s
s
s
n
d

A
v
 Usid

a

[
]

dO
A
M
W
1
S

W
O
U
s

lgSdsO0
S
I
A

Z
—
+
»

IN20T1a ALAG
ZS

I
N
I

4
ALA

s
u
A
a

N
O
I
L
I
S
O
d

X

B
L
A
d

N
O
I
L
I
S
O
d

A

45

Machine Code Applications for the Spectrum

Listing 7.1

46

O795
OBA

oOBas

O814d

8815
OB820

OB25

OB20

O825

O840

OB45
O850
O8SS
08460

0865

O87 a

0875
O8Bo

o8ss
OBI

OB95
OFOO
O9oO

O91LO

OFLS

O920

0925
O9SG

O9SS

O94G

0945
8950

0955

O94O

O965
O970

PLOT

FLE
FLA

FUSH BC
FUSH DE

Le At
AND 7
ADD 1
LD E,A

SRL oC
SRL oC
SRL oC

LD A,B
AND 56
SLA A
SLA A
oR Cc
PD. yA

LD A,B
AND 7
Lp (A
LD A,B
AND 192
SRL A
SRL A
SRL A
ADD D

ADD 64
LD B,A

FUSH BC
FOP HL

LD #B,E
LD 4,128
JR PLA
SRL A
DINZ PLE

FOF DE
FOP BC
RET

Chapter 7 Display Output

Write down the mapping of Figure 7.1a in octal:

Row 00 uses block 00

Row 01 uses block 10

Row 02 uses block 20

Row 10 uses block 01

Row 11 uses block 11

Row 20 uses block 02

Row 21 uses block 12

and light dawns! <

For the 64 rows of each section, all we have to do is swap the two least

significant octal digits of the row number (which is the y coordinate) to get

the 32 byte block number of the section. The remaining two bits of the row

number must then be 00, 01 or 10 to select which of the three sections we

want. (11 is an illegal value.)

Now that we know what we want to do we can draw (Figure 7.1b) a bit

manipulation diagram. From here the coding is more or less

straightforward, but note that it is all done in registers. Where a routine is

to be used frequently memory access operations are to be avoided as they

_ take half as long again as register access operations. Later on, in writing

_ characters, this routine will be called eight times per character or 6144

times for a full screen.
Now for the formalities and the program description:

‘ Routine PLOT

_ Entry Conditions x position in C register

y position in B register

Exit Conditions BC asat entry

DE as at entry

HL address of display buffer byte

A one set bit corresponds to the bit in the byte

addressed by HL which refers to the BC defined pixel

Note

1 The target bit in the display buffer is only indicated.

_ 2 Since the program is ‘drop through’ (except for the A register shift),

there is no flow diagram.

The above is an example of the documentation I mentioned previously.

Now for the program description.

47

Machine Code Applications for the Spectrum

SECTION DESCRIPTION

a Save registers.

b Mask out the bit number bits, add 1 and save the count in the E

register (see (h) below for the reason for this addition).

c Shift the contents of the C register three bits right (this forms

the index within a 32 byte block).

d Part 1 of the octal swap; (56 decimal=70 octal) move the

contents of B into A, mask with 56, move two places left and

place these three bits in the MS 3 bits of the C register. (Along

with the five bits which point to the byte within the block.)

e Part 2 of the octal swap; extract the LS 3 bits from the B register

and store them in D. 192 decimal is 128 + 64 or the MS 2 bits of a

byte, extract these bits from the B register (they point to which

section is needed), move them right three places and add them
to the 3 bits in the D register.

f The display buffer starts at 16384, which is bit 6 (decimal 64) in

the MS byte of a 2 byte address; add 64 to the total in the A

register and store the result in B.

Note: BC is now set up with the required address (on the assumption that

BC pointed to a valid pixel to start with). There remains the problem of

setting up the A register.

g BC is transferred to HL.

h B is set to the contents of E from stage b. This is one more than

the count in the LS 3 bits because the decrement of B by the

DJNZ operation is done before the right shift.

Bit 7 is set in A and the PLB / PLA instruction pair shift A right
as long as B is non zero.

Exit is with A having one bit set in the correct place.

j Restore BC and DE; A and HL are set up as required.

Exit

This is probably the most complicated routine in the whole book.

Everything which outputs to the display uses it and unless you understand

exactly how it works other things later on will probably be more difficult.

The Spectrum system allows the BASIC user to position the head of a

piece of text by using AT and takes a new line with the start of each new

PRINT statement. In the next part of the program, where we output

characters in various forms, the top lefthand corner of each 8 x 8 character

pixel array is located on the screen by two 1 byte variables, LINE and

COLM. Their relative positions must not be altered as they are used

48

Chapter 7 Display Output

ther to set up BC for acall on PLOT to determine which display buffer

yytes are to be loaded.

To simplify matters, COLM is incremented by 8 and when it overflows

nd becomes zero LINE is incremented by 8. When LINE points off the

screen it is set to zero and display begins again at the top lefthand corner of

he screen. The routine NPAGE sets both to zero and calls the display

uffer clear routine CLRD.

Listing 7.2(1)

i775 PRIN : AF

0980 BC

0985 , DE

0990 HL.
9955 32

L000 M,PXL
1005 96

1010 PY PXL
1015 96

1020 AF
1025 BG y (COL.M)

1030 PROT

1035 DE, HL
1040 MO >

1045 L4H
1050 H,o
1055 HL. , HL.
1060 HL. , HL.
1065 HL. , HL.
1070 BC,15616

1075 HL, BC
1080 B,8
1085 A, (HL)
1090 Hi.

1095 DE, HL
1100 (HL) A
1105 H

1110 DE, HL.
1115 RERT

1120 A, (COLM)
p25 8

1130 (COLM) ,A

Machine Code Applications for the Spectrum

1135 JR NZ,PXL
1140 LD A, (LINE)
1145 ADD 8g
1150 LD (LINE) ,A
1155 ADD 644
1160 JR NZ,PXL.
1165 LD A,O
1170 LD (COLM) ,A
1175 LD (LINE) ,A
1180 FPXL POF HL
1185 FOF DE
1190 FOP BC
1195 FOF AF
1200 RET
1205 COLM NOF

12190 LINE NOF

Listing 7.2(2)

1295 NFAGE CALL CLRD

1400 FLUSH AF

1405 L.D A,

1410 LD (LINE) ,A

1415 L.D (COLM) ,A

1420 FOF AF

1425 RET

PRIN

To display a single character at the location defined by LINE and COLM;
also to set LINE and COLM to point to the next character position.

This routine uses the Spectrum ROM character table of pixel bit
patterns, at 8 bytes per character for all the ASCII codes from 32 to 127
inclusive. They start at 15616 in ROM and each 8 byte block is set up along
the lines indicated in Chapter 14 of the Spectrum manual.

The requirement in printing a character is to load into the display store
the appropriate eight bytes and advance the LINE / COLM pointer(s) to be
ready for the next character.

Commentary

This is acutely dependent on the LINE/COLM pointer indicating a
character cell not crossing byte or display segment boundaries. I see no
reason for complicating the problem, but see Chapter 8 for how to deal
with the general problem.

50

Chapter 7 Display Output

owchart 7.1

if PRIN

A=At%6
STORE AF ON STACK
LOAD BC WITH LINE + COLM

FIND DISPLAY
BUFFER ADDRESS

A STORE BYTE ADDR. IN DE
HL=A x~+
HL=HL#*8 2xt
HL» HI+ HEAD OF ROM 4%

TABLE DATA
4x= 6x

5 L) BYTE OF BITS FROM ROM

E DE- HL
=A WRITE. Row INTO DISPLAY BUFFER

H=H+1 ON DISPLAY BUFFER ADDRESS
EXCHANGE DE- HL (Move oe NEXT BLOCK

B= B-1 BYTES — SEE PLOT)

y
4,
4
“$
“f

Z
4,
‘sf
VAAL SAAS CS

RESTORE REGISTERS

PRIN

i

i

il i
i}
|

i}
tt
i

51

Machine Code Applications for the Spectrum

The routine is entered with the ASCII character code in the A register

and it is first tested for ‘printability’. Non-printable characters are

omitted, not replaced by blanks. 32 is effectively subtracted from the

ASCII code, to give a position pointer to the bytes in the ROM, and A

stored on the stack. PLOT is now used to determine the address of the

display buffer byte to be used for the first row of pixels. LINE and COLM,

stored as adjacent bytes, are collected together by the LD BC,. . operation.

From PLOT the byte address is stored in DE and the character code

recovered, multiplied by 8 (8 bytes per character) and added to the head

address of the ROM data table to point to the required bytes. This is the

address to change if you want to use your own character definition bytes.

B is set to 8 to count the 8 bytes to be transferred from the ROM. That

byte is transferred to the display buffer and the display buffer pointer

incremented by 256 to point to the 32 byte block where the next byte is to be

placed. This is done by incrementing the H register of the HL pair when it

contains the appropriate data. The transfer loop at RPRT keeps its two

pointers in HL and DE, exchanging them as needed. It starts off with HL

pointing to the ROM and DE to the display buffer.

After the character has been written to the buffer COLM is incremented

by 8 (8 pixels maketh one character row) to point to the next character in

the line. If the count has gone over the top and become 0 LINE is

incremented by 8 (8 pixel rows maketh one character) and the result tested

against 192 for ‘beyond bottom of screen’. If at the bottom both LINE and

COLM are reset to zero. The routine exits after restoring registers, except

the A, at PXL.

This routine will not work properly if either LINE or COLM come to

contain any value which is not an exact multiple of 8. A first exercise for

you is to modify it to ensure that they do stay as exact multiples of 8.

PTEX

Printing text, which is just a question of feeding PRIN with a sequence of

characters, is achieved by arranging the text to be printed in the bytes

immediately following the call of the routine and having it terminated with

a zero byte. This works perfectly well with fixed length text, composed or

allocated at assembly time, but you will need to produce a modified version

which deals with text held somewhere else at a known address. I strongly

advise you, however, to mark the end of such text with a zero byte as it is

non-printable and easily tested for.

We saw in IFKEY how to use the subroutine return address from the top

of the stack to get at data immediately following the call of a subroutine.

We do the same thing here to get at the first, and subsequent, characters of

the string. At PXB, with HL pointing to a byte, it is loaded into the A

52

2700 SRHLS SRL.
SRL
RET
SET
RET

Chapter 7 Display Output

CALL. SRHL#
CALL SRHL#
CALL SRHL
RET

Machine Code Applications for the Spectrum

Flowchart 7.2

H
A
G

OL GAILNIdd SSaudadv
QL
d
W
A
L

Y
S
W
a
V
W

LX
SL

4
0

GN
A

T
H

AG

OL

CA
LN
IO
d

YW
AL
IV
YV
H?

H
U
M

WW

dv
oT

W
I
W
L
S

W
O
Y
s

T
H

G
v
O
T

x
a
t
L
d

T
H

-
L
N
A
W
S
Y
O
N
I

T
H

A
N
O
L
S
A
Y

M
I
V
L
S

NO

I
H

S
O
L
S

54

Chapter 7 Display Output

egister and compared with zero; if it is the end of text marker byte then HL

is pointing to a NOP instruction as well and the JP (HL) instruction

transfers control out of the routine and back to the main program;

otherwise, at PXA, A contains an ASCII character to be displayed by

PRIN. While PRIN runs the text pointer is saved on the stack so that it can

be recovered and incremented. Return is then made to PXB to collect the

‘next character or the end marker.

_ Now come two primitive routines for doing a double byte, 16 bit, right

shift. There is a much better, more elegant and faster way of shifting right.

SRHL

The two SRL operations shift each register right 1 bit place, the second, on

the more significant byte, will set the carry flag if a bit is ‘lost’ on the

bottom and unset the flag if no bit was lost. The RET NC exits from the

routine when no correction has to be made to the L register, otherwise the

"Jost bit is replaced in the MS bit of the L register by the SET 7,L operation.

_ RHL3
This performs three right shift operations together, so dividing the

contents of the HL register pair by 8 which is just what is required when

printing octal numbers as described in PRT8.

ae

PRT8

Now we can print text, what about numbers? Well, there are all sorts of

complicated routines that you can read about elsewhere. This will just print

a 16 bit binary number, in HL, as a 6 digit octal number, no frills, no sign,

just something simple so that we can have a method of debugging

programs later on.

There are two tricks here:

1 The ASCII characters for digits are a sequential set from 48 (decimal)

_ onwards, so the required octal character is obtained by adding 48 to the 3

binary bits of the octal value in question.

2 Use the ready-built PTEX routine to do the output and overwrite what

was output last time.

On entry the registers are all saved on the stack and DE pointed to the

byte where the LS digit of the output is to be loaded for printing by PTEX.

Bis set to 6 as there are only six bytes to be produced. At PRU3 the three

least significant bits of HL are obtained by masking and the character code

for the value calculated by the addition of 48. This is stored in the location

indicated by DE, DE is decremented and HL shifted right three bits to

reveal the next octal group if B does not go to zero. If B is zero all six bytes

a

Machine Code Applications for the Spectrum

Listing 7.4(1)

i
a 1430 PRTS FUSH AF

1435 FUSH BC
a 1440 FUSH DE
a 1445 PUSH HL.
id 1450 LD DEG REZ 1
i 1455 LD B,6
i= 1466 FPRUS LD A,
Ik 1465 AND 7 } 1470 ADD 48
i 14735 LD (DE) ,A

dl 1480 DEC 2 DE
q 1485 CALL RHLS$
q 1490 DINZ PRUS

1495 CALL FTEX
1500 DEFM "“cdefgh"
1505 FSZ1 DEER
1516 NOF

Add ot Be Beis
1520 ROP =.DE

tG25 FOR SBC
T3509 POP AF
1535 RET

Listing 7.4(2)

a 5440 PRTBW PUSH HL
i 5445 FUSH AF
ii 5450 PUSH DE
1a 54555 FUSH BC
i 5460 CALL FRTS
4 5465 CALL. [FKEY
14 5470 DEFB "m"
hi S475 JF FRE X
me. 5480 NOF

t) 5485 FREWX FOF BC
4 5490 POF DE
fi 5495 FOF AF
1 5500 POF HL”

iq 5505 RET.

i
i 56

Chapter 7 Display Output

Flowchart 7.3

PRT 8

SAVE ALL REGISTERS
SET DETO POINT TO THE
LS DIGIT CHARACTER
LOAD BTO COUNT 6 OCTAL CHARACTERS

LOAD A WITH 3 LS BITS OF L
ADD CODE FOR

STORE ASCII PangsER IN (DE)

SHIFT HL ay ie 3 BITS

RESTORE ALL REGISTERS

sf

on i

ee

f
i

ql

if

Machine Code Applications for the Spectrum

have been loaded on top of hgfedc in the listing, P8Z1 is a pair of spaces to

terminate the displayed 6 characters output by the call of PTEX after

which all the registers are restored to their entry values and the routine

exits.

PRTS8 can thus be inserted anywhere in a program when a check is

required on the contents of HL.

RPORT

While debugging programs it is often necessary to be able to display the
values of all the registers, so the next routine does exactly that, together
with the return address using PRT8. Since the program is so
straightforward there is no flow diagram.

There are three points to be noticed:

1 The stack pointer value, indicated by $= can indicate if the program is

‘running away’ because of unmatched POPs and PUSHs.

2 The CALL RPORT return address, indicated by +, allows several

outputs from different calls to be distinguished.

3 The messy way data is passed into HL to print the return address. There

is a better, more elegant way by computing the instruction, as is

demonstrated later, in MOVER and VAR$1 for example.

Listing 7.5

1540 RPORT LD Crs) or

1545 PUSH AF

155° FUSH BC

L555 FUSH DE

1560 PUSH Al
iSé6é5 L.D CHL) HL

1570 L.D CDES), DE

1575 L.D (BC#) , BC

1580 FUSH AF

1585 PoP at.

1590 LD (AF #) ,HL

1595 CALL. FTEX

58

(14600

1605

1610

1615

16206

1625

1630

1635

1640

1645

1650

FOOD

1440

—61465

1676

~614675

«1480
-~61485

61696

1697.
e 1700

1705

1710

1715

1720

a7 2

1730

L730

1740

1745

1750
Thabo)

1740

1765

1770
Bais

1780

1785

1790

1795 AFS

1860 HLS
A805 DEF

18190 BCS

1815 SPs

u AP = uw

HL., (AF#)
FRTS
PTEX
u BC= uw

HL, (BC#)
PRTS
FTEX
" HL= u

HL, (HL)
PRTS
FtEX
mW DE= thi

HL, (DE#)
FRTS
FTEX
Wee

HL, (SP)
FRTS
PTEX
" f= uw

HL., (SP#)
E, (HL)

Chapter 7 Display Output

59

Machine Code Applications for the Spectrum

Figure 7.2

O'23 45 676 4 10 NI 12 13 14 15 6 17 16 14 20 2 22 23 24 25 26 27 26 24 30 BI

i)

2

3

4

: SYSTEM BASIC PROGRAMS AND
: THEIR VARIABLES age a

ete. 8
q

4 EXPANSION IS THESE 48K
Do XE! :: WNWARD S MAP

3 TOWARD LAST 28

2 — IT WILL BE
BLANK WITH

; 16K SPECTRUM
é

7

8
q

°

1

21YOUR MACHINE CODE SHOULD BE AROUND HERE

-
USUAL

— UDG AREA SPECTRUM STACK AREAS
(EXPANDS UPWARDS) 4

UDG (USUALLY)
A_DISPLAY CHARACTER LINE

“ 8 ROWS PER
CHARACTER
LINE

a PIXELS PER ROW
EACH PIXEL MAPS _ 20486 PIXELS PER CHARACTER LINE

ONE MEMORY BYTE

PAPER COLOUR IF BYTE IS ZERO
OR ASCII CODE FOR SPACE
OTHERWISE BLACK

ear

Chapter 7. Display Output

Map$

Now let us put some of the bricks together for something useful — a
routine for displaying the free space in memory.
We have available 6144 bytes of display buffer which contain 48k of

pixels so we can map each RAM byte to a pixel (we ignore the ROM) by
setting the pixel to black ink if the byte is neither space, in ASCII, nor
blank, otherwise the pixel is left paper coloured.

Commentary

The calls of NPAGE and PTEX clear the display and set up the output

description in the top two lines; the top three text lines, or 24 rows of pixels

map to the display buffer and we know what is there so I don’t map that

either.

From labels NXF1 to NXF3 the routine is setting up the attributes area

so that each line of 8 rows of pixels is a different colour from its

neighbours. Each row, remember, covers 8*256 = 2048 bytes of RAM and

even rough location is impossible if the screen is all the same colour.

At NXF3 HL is set to the address of the head of RAM and BC, initialised

to point to the first address beyond the end of the display buffer, and

results in the sum HL + BC being the address of the byte to be currently

tested. If this sum runs beyond 16 bits to zero the carry flag will be set and

the routine exits on the RET C after all the RAM has been examined. The

byte addressed by the sum, in HL, is loaded into the A register and tested

for 0/32, in either case of equality the PLOT routine is skipped and the

pixel left as paper colour.

Since the byte count is from the head of RAM in BC the lower byte can

specify a pixel x position and the higher byte the pixel row. It is of course

the purest happenstance that this is the way that PLOT requires its input to

be specified.

Setting the ink pixel is just ORing in the bit in the A register, after the call

of PLOT, with the address specified by HL. The program then returns to

NXF with an increment BC to test the next byte.

Synopsis

PLOT performs the same function as the Spectrum plot function, it is the

foundation of all display output. It forms the basis of the animation

routine of Chapter 8 and the drawing program of Chapter 13.

PRIN displays a character, ASCII code in the A register, at the next

available character position.

NPAGE clears the screen and sets PRIN to start at the beginning of line

one.

61

Machine Code Applications for the Spectrum

Flowchart 7.4

MAP$

[[weame: || cesan scnzes
[prex |] tme orpispay

HL= HEAD ADDRESS OF ATTRIBUTES a 4
C=24 24 LINES OF 32 CHARACTERS

SET UP ATTRIBUTES
cag DISPLAY AREA

DE = ATTRIBUTE CODE LIST HEAD ADDRESS

A=ATIRIBUTE POINTED TO BY DE

DE=DE+1 (NEXT ATTRIBUTE)
B=32 (32 CHARACTERS/LNE)

BC= 614-4 (SKIP DISPLAY
BUFFER)

163584 (SKIP ROM
HL+BC . .

HL
HL

— ae EE

“HeMony BYTE

LEAVE AS PAPER
COLOUR. IF BYTE
1S srace OR ASCII

RESTORE AND INCREMENT BC

62

1820
1825
1830

1835
1840

1845
1850

(1855

1860
~61865

1870

1975
1880
1885

~—61890
~=1895

61900
1905
1910

1915

1920

e250
1930

1935
1940

1945

1950
1955
1940

19465
1970

7S

1980

Regs he

1990

1995
2000
2005

2010

Listing 7.6

MAF

NXF 1
NXF2

NXFO

NXFS

NXF4

List

CALL
CALL.
DEFM

NF AGE
Poe

Chapter 7 Display Output

" STORE MAF FROM 22528 TO

HL, 22528
C,24
DE ,LIST
A, (DE)

HL. , 16384
HL, BC
c
BC
A, (HL)
(8)

Z,NXF4

‘
i
{

Machine Code Applications for the Spectrum

PTEX uses PRIN to display the text following its call (the text must end

with a zero value byte).

PRT8 uses PRIN to display the contents of HL as an octal number.

PRT8W uses PRTS8 with a wait for the ‘‘m’’ key to be pressed.

RPORT displays the contents of the registers (not [IX and IY).

MAP3$ displays memory occupation.

CHAPTER 8

Animation

- GCELL

_ The aim and object of this routine is to display rapidly a sequence of images
at a moveable point on the screen. These images or patterns are drawn ina

box or cell. The larger the cell, of up to 2040 pixels, the longer the routine

takes. The BASIC interface is just about as complex as can be handled

_ without designing a fundamentally new, and more general, technique: see

Chapter 9.

Interface

_ The user sets bytes 23675/6 (UDG) to the address of the first byte of a block

of data, defined below, which the routine will use. There may be several

‘such blocks, switching amongst them is done by changing the contents of

UDG.

BYTE DESCRIPTION

0 cell horizontal position x

cell vertical position y

control flags and next frame no. *

BCR no. of bits per cell row 1 — 255

BCC no. of bits per cell column 1 — 255

WPC no. of works per cell 1 — 255
frame sequence control bytes; the LS 4 bits of byte 2 to

one of these 15 bytes; the LS 4 bits of this byte define

which cell is

20 to be displayed

21 ; set to 0

22 first byte of cell 1 data. There are WPC bytes in this and

the other cells

22 + WPC first byte of cell 2 data

22+2.WPC first byte of cell 3 data

NDNnunkb won

and so on for as many cells, up to 15, as are needed.

65

Machine Code Applications for the Spectrum

Control flags and next frame no. — byte 2

BIT NO. DESCRIPTION

7 MS bit: if set the routine exits doing nothing

6 set by the routine if any part of the currently displayed cell

is outside the allowable display area. This bit should be

monitored by the user program

not used

if zero the routine exits

If non zero the contents are used to point to a frame

sequence control byte which identifies the next cell to be

displayed. (Add 5 to the value and the result is 6 to 20; this

is the number of a byte, relative to the head of the block,

which contains the cell identifier). The routine

increments this pointer or resets it to 1 after the end of the

sequence list is met, as recognised by a zero entry. This

can always be overwritten by the user rewriting byte

(UDG) + 2

wn | of

Cell data

Each row of pixels in a graphics cell starts at the MS bit in the first of a

sequence of bytes. There are BCR/8 bytes in this sequence, and surplus bits

are ignored. There are BCC sequences, one for each row of pixels in the

cell. Each set bit generates an inked pixel but remember that the attributes

area must be set up as a separate exercise.

Description of GCELL

SP is stored in PANIC so the stack can be reset and a dignified exit made if

the routine attempts to write beyond the allowable display buffer area. The

first 21 bytes of the control data is copied into the routine and TM1 set to

the address of the first graphics cell. Byte 2, the flag byte, is now tested and

the routine exits if ‘switch off’ or no cell is specified, otherwise the last four

bits specify which sequence table entry contains the required cell number.

LOA to L2 and DJNZ operation pick up this cell number and set CELLZ

with the head address of the cell data.

At L4A—L4 the next sequence table pointer is calculated and stored

back in the interface table byte 2 ready for use at the next call of the routine.

FADDR is set up with the address of this byte for use by SEBIT if need be.

66

Chapter 8 Animation

Sa
LA

gd

U
d
M

67

Machine Code Applications for the Spectrum

Flowchart 8.1

GCELL

STORE SP FOR FAILURE EXIT
COPY CONTROL DATA FROM PROGRAM

TM1 = ADDRESS OF FIRST CELL

YES NO CELL (SWITCH OFF
(SPECIFIED) Pe SPECIFIED)

A=BCR (BITS PER CELL =;
f Row, LOAD WPR WITH)

(on) BYTES PER CELL ROW

SET HL TO PO ee POINT —_ ee LIST
NUM

TM2 = SEQUENCE st POINTER TO SUBJECT ENTRY
DE= WORDS PER CELL
HL= ADDRESS OF FIRST CELL

STEP DOWN TO FIND
on HEAD OF SUBJECT CELL

STEP BACK ONE CELL
CELLZ = HL (HEAD OF SUBJECTCELL

A= NEXT SEQUENCE CELL Y

= WES END OF
A=1 SEQUENCE

TABLE.

STORE NEXT SEQUENCE TABLE ENTRY NUMBER
IN PROGRAM (FLAG BYTE)

FADDR = FLAG BYTE ADDRESS

A
A

co) NUMBER OF CELL ROWS
- (REMAINING)

ALL CELL PS cy

BCC =A

BC =LINE + COLUMN POINTER FOR THIS ROW

PLOT DETERMINE DISPLAY BUFFER ADDRESS
FOR FIRST BYTE OF THIS ROWS DATA

A= HORIZONTAL PIXEL POSITION
A=A2-g (REQUIRED RIGHT SHIFT OF CELL DATA
BC= DATA ROW HEAD ADDRESS

| SEBIT — 1 ROW OF CELL DATA TO DISPLAY BUFFER

CELLZ = CELLZ + WPR POINT TO START OF NEXT ROW
INCREMENT DISPLAY ROW

68

Chapter 8 Animation

Listing 8.1

2015 GCELL LD (FANIC) ,SP
2020 UDG 23675
(2025 HL., (UDG)
2030 DE, XY
2035 BC ,CELLZ—-XY-1
3040
2045 (TM1) ¥HL
2050 A, (FLAG)
2055 7,8
2060 : NZ
2065 15
2070 (FLAG) ,A
2075 1
2080 M
2085 A, (BCR)
2090
2095
2100
2105 (WFR) A
2110 A, (BCR)
2115 7
2120 : Z,LOA
2125 A, (WER)
p21 30 1
2135 (WER) 4A
(2140 HL. ,FSEQ—1
2145 A, (FLAG)
2150 BLO
2155 C,A
2140 HL, BC
2165 B, (HL)
2170 (TM2) ,HL
12175 A, (WPC)
(2180 E,A
2185 D,o
2190 HL, (TM1)
2195 L2 HL. , DE
2200 te.
2205 a)
2210 HL. , DE

Machine Code Applications for the Spectrum

Zero
3930
ae a a

2225

2230

2235

2240

2245

2250

2255

2260

2265

2270

2275

2280
2285

2290

2295
S00

2305

2310

2415
2320

23520
23350

2335

2340

2345

2350

2355

2360

2365

2579
2375

2280

2385

2390

2395

2400

2405

L4A LD

L4 _D

XX LD

FANIC DEFW

WPC DEFE
FSEQ DEFM

NOF
CELLZ <“DEFW

2410 WER DEFW
2415 TML DEFW
2420 TM2 DEFW
2425 FADDR DEFW

70

(CELLZ) ,HL
HL, (TM2)
HL.

(HL) A
(FADDR) ,HL
A, (BCC)
1
M
(BCC) ,A
BC, (XY)
FLOT
A, (XY)
7
BC, (CELLZ)
SEBIT
HL, (CELLZ)
BC, (WER)
HL. , BC
(CELLZ) HL
A, (XY+1)
1
(XY+1),A
LXX
Q
QO

QO

i)

ie)

Oo

"cCD.N.sLaine 1983"

Chapter 8 Animation

Cell plotting (LX X onwards)

On entry XY holds the position of the top lefthand corner of the cell in

PLOT required format, the other rows are defined by incrementing the y

part of XY. BCC is used as a counter of the number of rows to be output

_and the routine exits when BCC has been decremented below zero.

PLOT determines the display buffer load byte address and bit number

- for the head of the current row of pixels which is pointed to by CELLZ, and

SEBIT plots the row of pixels; CELLZ is then incremented to point to the

head of the next row of pixels and the loop repeated.

SEBIT

This routine plots or unplots pixels in the display buffer according to how

they are set or unset in the cell row. Separate pointers are maintained to

step through both sets of bytes.

 Atentry to DNB HL points into the display buffer and DS points to the

bit to be set/unset; CELLZ points into the cell data and TS is the bit

- number of the cell byte; WC is a count of bits/pixels per cell row — the

routine loops BCR times.

TST is a computed bit test instruction to test the TS bit in the cell byte,

_ according to how the bit is to be set/unset. So SET or RES instructions are

computed and excuted at DO to set or unset the required bit in the display

buffer.

Having dealt with one pixel the pointers are incremented; if either bit

pointer is negative it is reset to 7 and the corresponding byte pointer is

incremented. If the display buffer pointer, HL, points into the last pixel

_ row then, since to simplify matters this is forbidden, the flag byte has bit 6

set and there is a PANIC escape.

Note: this uses computed instructions: how will your assembler deal with

them?

64 + 7 generates the BIT ?,A instruction

128 + 7 generates the RES ?,A instruction

192 + 7 generates the SET ?,A instruction

_ Synopsis

GCELL, which uses PLOT, enables you to do complex animation.

Chapter 13 will let you set up blocks of colour. Later on there is a routine to

_ move the blocks around, or so it will appear.

71 |

Machine Code Applications for the Spectrum

Flowchart 8.2
SEBIT

ps="A-7 STORE BIT NUMBER IN DS
TS=7 COUNTER DOWN CELL ROW
WC= BCR COUNTER FOR BITS IN ROW

Cee EE atl

one) DT ajo Jol [+ |cb,

COMPUTE. TEST INSTRUCTION +[@[! [b>] >[b[e]e] | |
(SECOND BYTE) >BIT He

A= CELL BYTE. er ee
(POINTED TO By BC)

EXEWTE. TEST OF CELL BYTE
A= DISPLAY BUFFER BIT #

UNSET A™ BIT NO YES, SeTA™ BIT

COMPUTE RES (BYTE fe a COMPUTE SET (BYTE 2)
HIFT

PT ale ety eis Lert wr Cer er
[To[b]>Telolol'} app in ats 7+ -g ClLelbPlorer = 7] ADD IN BITS 7,6+2
‘ DOB 76 g

MOVE COMPUTED 2" BYTE
A= DISPLAY BUFFER BYTE
2 POINTED TO BY HL

fF TE SET/RES (AS COMPUTED)
i OY ea RESTORE BYTE TO DISPLAY BUFFER
MOVETO HL=HL+1 ean
NEXT CLEAR Cy FLAG
moat gid DE=TEST LIMIT

YES

SET FLAG BIT 6
RESET SP POINTER
PANIC ESCAPE

ae
(THE NEXT BYTE ISIN ROW 141 MaA-1
=THE BOTTOM ROW OF DISPLAY
PIXELS IS NOT USED)

MOVE TO NEXT
CELL BYTE

ZA SET TS FOR NEXT CELL BYTE TEST
A =W WORDS PER CELL (COPY)

NO YES THIS ROW ALL DONE

DO NEXT BIT
6s) Wc=A “|

TZ

Chapter 8 Animation

Figure 8.2

73

IH

49

OL

AL
NI
GA

SI

SL
AG

SI
HL

@
Mo
w

30

LI

9

Machine Code Applications for the Spec
trum

Listing 8.2

2430
2435
2440
2445
2450
2455
2460
2465
2470
2475
2480
2485
2490
2495
2500
2505
2510
2515
2520
2525
Sa30

2525
eo4Q

2045

Sago
Soe

2560

2565
2a7Q

2a7g

2aB0
2085

eo9)

S595
24600

2605

2610
2615

2680

SEBLT

DNB

TST

SETE

DOB

ba

A, (BCR)
(WO) ,A
a, (TS)
A
A
aA
64+7
(TST+1),40
A, (BC)

A, (DS)

19247
(DO+1) ,A
A, (HL)
O,A
(HL) 4A
A, (DS)
A
ey, Jha
Hi.
a
DE, 22496
HL. , DE
HL. , DE
M, JMX
HL., (FADDR)

2655

2640

2645

2650

26955

2660

2665

2670)

2675

2680

2685

2690

2695

2700

2705

2710

2/15

2720

of7eg

2730

27

2740

2745

JMX

JMA

JME

DS
TS

we

L.D A, CHL)
OR 64
LD (HL) ,A
LD HL, (PANIC)
LD SFYHL
RET
kh Ag?
LD (DS),A
Ds, “Ay Crs)
DEC A
JF FY, JMB
CD “ALF
INC BC
LD (TS),A
LD A, (wo)
DEC A
RET ™M
RET 2Z
LD (WO),A
JR DNB
DEFB ©
DEFER ©
DEFB Oo

Chapter 8 Animation

75

CHAPTER 9

Error Handling and Parameter Name

Passing

Error return handling

The notes on the stack (Chapter 3) mention a method of escape from a

piece of code if some insoluble or unforeseen condition is encountered (see

also Chapter 8 and the use of PANIC). In such an event it is very useful to

be able to output some indication of the problem.

Machine code seems nearly always to be called by RANDOMISE

USR... There is no fundamental need to do this; Chapter 26 page 180 of

the Spectrum manual uses PRINT USR 32500 to print the contents of the

BC register (as set up by the machine code); if we code such that they always

exit abnormally with BC O we can call them by:

IF USR...<> 0THEN GOTO. . .error routine

or, better

LET errorcode = USR...

IF errorcode < > 0 THEN GOTO...

since we can design the non zero value to have some special significance.

All these IF... <> 0 THEN GOTO... are unslightly and (worse still)

are in BASIC. Look at the variables NEWPPC and NSPPC in Chapter 25
page 174 of the Spectrum manual.

NSPPC tells us exactly what to do. We design the BASIC part of our

program such that some line, say 2, is the line to be jumped to in an error

condition. Our error exit must then contain:

LD HL,2
LD (23618), HL
LDA,1

LD (23620),A

which pokes NEWPCC with 2 and NSPCC with 1. Lo and behold, we
arrive at line 2 in BASIC.

We now undertake to call our routine by:

LET errorcode = USR...

Machine Code Applications for the Spectrum

Figure 9.1

‘

ws—- EPP E aT
LONG NAME CODE

PETE [ep Po] ase e
“ble berehie] *
“Cheer EhE] «
“EEPEP PEI] — rm

ASCIL @-60n

es
2
SF

CHARACTERISTIC

2
——

HEAD OF VARIABLES AREA

Chapter 9 Error handling and Parameter Name passing

and continue normally with the next statement. With any error exit we
arrive at line 2 and errorcode contains the value of BC when the exit was
made. Strange as it seems, the assignment of BC to errorcode is made
regardless of how the exit is made.

There is just one small snag on the horizon. We can use BC as a means of
passing information out of the machine back into the BASIC world, and it
would be a pity to waste this facility for error routines. After all, good
programs like ours do not meet error conditions (!) Can we get the error
information out some other way?

Again the Spectrum manual has the answers, well hidden away in the
depths of Chapters 24 & 25. It is a somewhat roundabout path but I can
promise some primroses by the way.

1 23627/8 — VARS contains the address of the head of the variables
tables in the BASIC program.

2 Pages 166—170 shows how these variables and their names are
organised.

If the FIRST executed line in the BASIC is:

0001 LET ERROR = 0: GOTO...

then the head of the variables area will be as Figure 9.1 and the error
routine in the machine code program can locate bytes 5—9 and insert values
as required into the variable ‘error’. The key here is that the first statement
in the program forces the first variable to be located at the head of the
variables area. At any point in the running of a BASIC program the
sequence of the variables in the variables area will probably depend on the
way in which that point in the program was reached since entries are made,
as required by LET ??? =... statements, as they are encountered.

Our program now looks something like:

0001 LET error = 0: GOTO 100

0002 PRINT ‘‘ERROR CONDITION = ”’serror
0003...... error handling routines...

0100 REM program proper starts here

0101

0150 LET q=USR...

and q is some useful value generated by the routine and passed back to the

BASIC program via the BC register.

79

Machine Code Applications for the Spectrum

Note now:

— BC only allows you to get a value from code into BASIC.
2 ‘Error’ can, if you want, be a 5 byte Spectrum floating point number

of a Spectrum integer value.
3 We can now communicate between code and one BASIC variable,

and, by extension, the BASIC program.

4 Wecould even change the use of ‘error’ and use it as an input variable
to the machine code.

We can stop here, or go on to develop a method of passing variable
names and values (parameters) between the machine code and the
Spectrum BASIC program. We need to be able to do two things:

1 Pass variable names to the routine

2 Givena variable name, we have to find its address in the variables area
of the BASIC program.

Let us first formalise how we are going to deal with error conditions.
On program entry we undertake to ensure that the first BASIC variable

has a five-character name which will be reserved for passing error codes.
We further undertake that our error handling routine(s) will start at line 2.

The machine code routine(s) all commence by storing the current value
of the stack pointer for the (exclusive) use of the escape mechanism.

The escape mechanism shall return to the BASIC program the then
current contents of the DE register pair, into this first BASIC variable, and
force the return to line 2.

Entry to the escape mechanism is with DE set to a suitable code value and

a JP, CALL, or JR operation as seems appropriate.

The routine is listed in Listing 9.1. ERROR is the stack pointer reset
value set up at the routine call.

Listing 9.1(1)

1215 ERREX Lp HL, (ERROR)
1220 LD = SFYHL
1225 LD HL,2
1230 LD (23618) ,HL
1235 Go : Aas
1240 LD (23620) ,A
1245 LD HL, (23627)
1250 LD BC.7
i255 ADD HL,BC

80

1260
1265 ERADR
1270

1275 ERROR

Listing 9.1(2)

oOoOos

OOO

OoOLS
OOO

OOSS

OOO

OO85

OO4

Oo4s
oOosG

OOSS

OO6O

QO6S

OoO7O

OO73

OoOBa

Oog8s

ONO

O95

O100o

O10

O1190

O115

O120

QO125

O130

OL35

O1L40

O14

O1so0

O1S5

O1460

O165

OL170

O175

LD
L.D
RET
DEFW

Chapter 9 Error handling and Parameter Name passing ;

(ERADR+2) ,HL
(ERADR+2) ,DE

oO

40000
(ERROR) , SF

AF

AF

SORTF
TRAPS
(ERROR) , SF
AF

8]

Machine Code Applications for the Spectrum

OL1B0

O185

O190

O195
O2OO

O205

0245
O250
O255
0260

0265
O27Q0

0275
O2BO

0285
O296

0295
OS00

O305
OSLO

OF15
OSLO

O40

O245
OFS50

25S
O60

O365
OS70

O375
OSBO

O385

OS9O

O39S

82

FUSH
FUSH

FUSH

FUSH
CALL
JF

BC
DE

HL.

Ix
GCELL

TRAFS

(ERROR) ,SP
AF

(ERROR) , SF

IVERT
TRAPS
(ERROR?) , SF

Chapter 9 Error handling and Parameter Name passing

O40 CALL DRAWA

O4os JF TRAF#
O410 LD (ERROR) , SF
O415 FUSH AF
O420 FUSH BC
C435 FUSH DE

O430 PUSH HL

OAS FUSH IX
O4AO CALL DEMO

O4gs JF TRAF' €
O450 LD (ERROR) , SF
0455 FUSH AF
9460 FUSH BC

0465 FUSH DE

O470 FUSH HL.

O475 FUSH IX

O4BO CALL DEMO?

o485 JF TRAFE

0490 TRAF# FOF Ix
O4935 TRAGQE FOF HL

O500 TRAR# FOF DE

O505 TRAS# FOF BC

OS10 TRAT# FOF AF
O3LS RET

Passing variable names (parameters)

Chapter 25 page 174 of the Spectrum manual holds an answer to the

problem. NXTLIN (location 23637/8) contains the head address of the

next line of the BASIC program ie the one after the one which contains the

LET... = USR... statement. We might put a list of parameters in this

next line, hidden from the BASIC system by a REM statement.

A code call with parameters would then look like:

0175 LET y= USR 12345

0176 REM a, b: REM aand bare parameters of USR 12345.

Chapter 24 page 166 tells us how to get at the names. NXTLIN points to

the MS byte of the line number so (NXTLIN) + 4 is the address of the first

character of the text of that line; we step down the line looking for the REM

token (= 234) and then we start looking for the variable name which we will

specify to end in a comma, colon or an ENTER token. Spaces will be

83

Machine Code Applications for the Spectrum

ignored and integers will be detected as they commence with a digit...

STOP !!!

It is very easy to get carried away when designing a piece of program; the
specification becomes bigger and better, all singing and dancing, and much
harder to debug; so much so that the program, which started as a good
idea, becomes: a bilious nightmare and is eventually abandoned in a
mixture of disgust and despair.

Let us abandon, for the time being, passing numerical values and
multicharacter variable names, and restrict ourselves to passing a limited
number of single letter variables (which may be simple variables, strings or
arrays). We can always go and complicate matters later on.

Flowchart 9.1 is a reproduction of the original flow diagram; Flowchart
9.2 is the final version which ties up with Listing 9.2. The box VAR$1 is
another routine which searches the variables area looking for names
(Flowchart 9.3). It returns either A=0 end of data, or HL holding the
address of the head of the variable name and A = first 3 (code) bits of that
name: see below for the details.

The routine does not do exactly what it might have been thought it would
do. The letters, brackets and $ can be in any order and the effective variable
identifier is the last letter. The REM statement must be terminated bya
colon or ENTER token. It is left to you, the reader, as a simple exercise to
remedy these defects if you want to.

Documentation

Entry conditions none

Exit conditions All registers lost

PARMO-PARM6 are the addresses of the first
characters of up to seven variable names in the
BASIC variables area. 0 indicates that no
parameter is present

Note: The calling routine must verify that the type of the received variable
is correct and extract/load the appropriate bytes.

PCALL

The number of parameters to be handled, PARMO, PARMI,... is
calculated at assembly time and PEND, their count + 1 , is set up on entry.
The right shift allows for two bytes of storage for each PARM location.
For more parameters just add 2 byte storage as required between PARM6
and PEND; the LDIR operation will clear everything on entry. Remember,
the PARM list contains the ADDRESSES of the head of each variable
name.

84

Chapter 9 Error handling and Parameter Name passing

Flowchart 9.1

Pro: temseTqco Phz0, B=0, L=¢
ve (wxtr)4 2

Couser Coe

ian

iv
sift AN

L= A-bok © <

4 40) © 6-1

At AL) A a a
2 4 a3

a ___ Lied,
: ERLoL

oe rae \o ND. bleak Be |B | |

“
4-0

Fae ee FS13
| Avee | Fao

ba yes
_ ap

ee {J E0e |
as

85

Machine Code Applications for the Spectrum

Flowchart 9.2a

PCALL —a

FIND ogee ae vie NAMED PARAMETERS IN REM STATEMENT
FOLLOWING USR CA

ENTRY - NONE
EXIT - ADDRESSES OF KEADS OF PARAMETER NAMES ARE PLACED IN PARMG, 1 etc.

oma WORKSPACE + OUTPUT ADDRESS TABLE ALSO F$ AND RB
ET PARAMETER LIMIT COUNTER = vs OF ALLOWED LIST +1
er §X =HEAD ADDRESS OF OUTPUT T/
SETHL =HEAD OF TEXT IN NEXT UNE 3F BASIC PROGRAM

ENTRY FROM
F4,4b

IEXT CHARACTER OF REM STATEMENT LINE.

NO YES REMOVE SPACES HERE

HL = HL+1
Ph =P6+1 TOTAL CHARACTER COUNT

No Cron Sis

256 CHARACTERS
a a BEEN READ

TOO MANY)

L READ UNTIL REM

REM TOKEN
HAS BEEN
READ

TOKEN IS FOUND

AFTER REM READ NEXT =

COME HERE FORALL
CHARACTERS AFTER REM

A =(HL) A HOLDS NEXT CHARACTER

F$ MARKS ” $” READ

END OF
PARAMETER

LETTER CODED 1 TO 26
B- aTos

NOT LOWER CASE LETTER ria

Chapter 9 Error handling and Parameter Name passing

Flowchart 9.2b

PCALL —b

ENTER HERE AFTER READING
THE END OF A PARAMETER ENTRY

A=BIT6,5

AHOLDS PARAMETER TYPE CODE AS PER
"7 aa VARIABLES AREA ENTRY

A=A0

A NOW CONTAINS FORM OF PARAMETER
TO BE LOOKED FOR IN VARIABLES AREA

A STORE ITINB
lt) INITIALISE ENTRY FOR VAR$1

END OF VARIABLES AREA A HOLDS FIRST
NO SUCH PARAMETER ENTRY CHARACTER FROM

VARIABLE NAME.

YES VARIABLEPOR’ qo
NO 6-0

THE REQUESTED PARAMETER
HAS BEEN FOUND -
IWS HEAD ADDRESS IS IN HL

STORE HLIN PARAMETER ADDRESS LIST
INCREMENT IX—THE LIST POINTER
DECREM METER COUNT PEND

YES

TOO MANY ENTRIES IN
CLEAR 'F$, RB ‘ST

RESTORE HL ROM Pz a alas
(HE Fo! POINTS TO CHARACTER LAST

READ FROM REM STATEMENT)

NO YES LAST CHARACTER WAS
: OR ENTER TOKEN

F.4,4a COLLECT NEXT CHARACTER
FROM REM LIST

87

Machine Code Applications for the Spectrum

Listing 9.2

2750

2755

2760

2765

2770

2775
2780

2785

2790

2795
Z2BOQ

2805

=B810

“915

2820

2825
2830

2835
2840

2845
=850

2855

2860

28465
=B70

2875

[880
“885

2B90

2895

2900

2905

2910

2915
2920

2925
2930

2935

22740

2945

2950

88

FPCALL
NXTLN

RR

RRR

RST

RSET

RT

RV

HL,
23637
(FO) sHL
HL FO
DE, PO+1
BC ,PEND-PO

A, PEND+3~—FARMO
A
(PEND) ,A
IX, PARMO
BC, 4
HL, (NXTLN)
HL,BC

A, (REMS)
Q

NZ,RSET

:
:
ec
~

a

Chapter 9 Error handling and Parameter Name passing

2955 JR RRE

29760 RU CF ae as
2965 JRF Z,RV

2970 CF a
2975 JR Z,LB

2980 CF fgatt

2985 JR Z,LB
2990 CP 13
2995 JR Z,LB
2000 SUB 97

S005 JF M,ERX2
BOL SUR 26

S015 JF PVERXS
S020 ADD 27

SOS L.D B,A

S030 JR RRR
2035 LEB LD A, (FS)
SO4Q CF QO

2045 JR Z,LEB1
3050 LES L.D A, (RB)

3055 CF Q
BQ60 JR Z,LE4

3065 LBS L.D A,128+64
BO7O Fe LEX

3075 LB4 LD A, 64
2080 JF LEX

2085 LB1 LD A, (RE)

S090 CF ©)

SIGS JR Z,LES
; S100 LD A,128
: 3105 JR LEX

é S110 LBS L.D A, 64432

We 3115 .px or Bs
: S120 LD B,A

S125 LD Ayo

S130 LD (FZ) ,HL

S135 SCHL CALL VAR#F1
E — 3140 CF Q

3145 JF Z,ERX2

S150 L.D A, CHL)
| S155 CP B

' S160 JR Z,FARM

31465 BIT 7,A
f S170 JR Z, SCHL

| 89

Machine Code Applications for the Spectrum

S175

3180

3185

S190

S195
S200

S205
S210
S215
eae)
tan tant
tet ate al ed

aa)

3235
3240
3245
S250
3255
3260
3265
3270
3275
3280
3285
3290
3295
S300

3305
3310
3315
3320
eee a

Ad

3345
S350

S355
3360

3365

S370

S375
3380

S385
SS9O

90

FARM

RHL

CIX#0) ob
CIX+1),H
tx
ix
A, (FEND)
A
(FEND) ,A
Z,ERX4
Ao
(Fe) A
(RB) A
HL., (PZ)
A, (HL)

z
13
Z
RRR
QO

Qo

Q

oO

ts)
CG

oO

a)
2)

9)
QO

QO

QO

DE, 1
ERREX
DE,2
ERREX
DE,%
ERRE X
DE,4
ERREX

Chapter 9 Error handling and Parameter Name passing

The RR—RST-—RRR part of the routine reads down the next program

line until the REM token is found at which point the variable REMS is set

non zero, thereafter RST will branch to RSET where the next non space

character from the parameter REM statement is tested. F$ is set if a $

(string indicator character) is read; RB is set if either (or) is read (array

indicator characters), acomma, colon or ENTER token (13) forces a jump

to LB and then the character is tested to be a lower case letter. If it is then it

is stored, less 60 (hex) in B; any character failing the test causes an error

escape which sets DE = 2 and calls ERREX.

When LB is reached a parameter name has been read, and the program

LB to LBX examines F$, RB to determine the required type and form, with

the identifying letter, the entry to be looked for in the variables area.

A is set to zero to initialise VAR$1 on its first call at SCHL. VAR$1 exits

with A = Oif no more variables exist and the routine escapes with error 2,

otherwise, HL points to the head of a variable name which is then

compared with the subject being searched for. If not yet found the

program returns to SCHL with A non zero otherwise PARM makes the

head of the code which stores the head address of the variable in the

parameter list and checks, first, that there is room for it. The markers F$,

RB are reset and the routine returns to RRR to read the next character from

the parameter list or exits if the end of the list was met.

VAR$1

The variables area consists of a sequential table of names and data whose

head address is given by the contents of 23627/8. Chapter 24 page 166—8 of

the Spectrum manual defines the format and coding of all of them and
VAR$1 uses this to deliver variable addresses.

The first three bits of each variable define its type and so enable the start

of the next variable to be found. These bits are:

000 not used

001 not used

010 string

011 single letter name variable

100 array of numbers

101 multiple character name

110 array of characters

111 FOR loop control variable

These codes are used to compute a relative jump at JNV to another

relative jump which deals with finding the end of this variable and the start

of the next. The whole process is started off by thinking of the previous,

non-existent variable, as being of type 3 by offsetting the head of the

variables area by 6 and jumping to J3.

91

SSS SS

Machine Code Applications for the Spectrum

Flowchart 9.3

VARS 1 FIND ADDRESS OF NEXT VARIABLE. IN VARIABLES AREA ENTRY A= INTALISE
A+@ CONTINUE SEARCH OF VARIABLES AREA EXIT Az NO MORE DATA~ VARIABLES AREA END REACHED A#@ A= TYPE OF VARIABLE FOUND HL HOLDS ADDRESS OF HEAD OF VARIABLE NAME.

VAR$1

STORE BC, DE

<> INITAL\SE.

CLEAR CARRY BIT
SET HL TO HEAD OF VARIABLES
SET HL BACK By 6 BYTES PREVIOUS VARIABLE ADDRESS)KL(VAR$) GSiF LAST ENTRY WAS TYPE 3) SET A = CODE TYPE OF VAR$= HL LAST VARIABLE. VTYPE

HANDLED

COMPUTE JUMP To J@ - 37

DISPLAY ERROR * pc() 2 LONG NAME peg
VARIABLE.
19 BYTES [[exnoe J] ERROR

BC=19
HL= wale ADDRESS

ar > pet TO LENGTH
BC = LENGTH
ae ALS + BC
ADD 2 FOR LENGTH BYTES

ND OF
LONG NAME

BC HOLDS N° OF BYTES To NEXT VARIABLE
HL =(VAR$)+ BC

HL POINTS TO HEAD OF NEXT ENTRY A = FIRST BYTE OF NEXT NAME

CODE TYPE
(TIMES 2)

NOTE : faa 'S THE ADDRESS SOF THE
FIRST CHARACTER OF THE NAME ale THE Bre oe VARIABLE.

By THE ROUTINE RESTORE BC, DE

92

Chapter 9 Error handling and Parameter Name passing

The labels JO to J7 identify the sections of code which deal with the

corresponding variable types as indicated in Flowchart 9.3. With type 5 the

end of the name is indicated by the setting of the MS bit in the last byte,

FVEND looks for this and the routine proceeds as if a single letter variable

name had been read.

Between calls of VAR$1 the variable VAR$ holds the position reached

so far in the scan. During the routine HL points into the variables area.

Should the routine start to generate errors, after having worked

correctly, I would suspect that the Spectrum variable VAR$ had been

corrupted, or the variables area had been overwritten.

Note on the computed jump at JNV:

The instruction JR JO is a two byte operation

byte 0 = 24 decimal, 18 hex

byte 1 = offset

Since the whole table consists of such jumps the required offsets will be 0,

2,4, 6, etc. VTYPE can only produce the eight values 0 (1) 7 shifted left one

bit, ie 0 (2) 14 and the table covers all the possibilities. The Oth and first

entries, both impossible, jump to the error routine.

Listing 9.3

2395 VARSS EQU 23627

S400 VARFi FUSH BC

3405 FUSH DE

3410 CF OQ

S415 JF NZ,NV1

S420 OR A

2425 LD HL, (VARSS)

R430 LD BC ,6

3435 SBC HL,BC

3440 L.D (VARS) , HL

3445 JF Js

S450 NVI CALL. VTYFE

3455 LD CINV+1),A

S460 L.D DE , 666

2445 JNV JF Jo

3470 JR Jo

34735 JR Jo

3480 JR =

2485 JR J3

3490 JR J4

93

Machine Code Applications Sor the Spectrum

2495 JR JS
S500 JR J6é
S505 JF J7
3510 Jo CALL FTEX
2515 DEFM "“VAREL 39 error" S520 NOF
2525 CALL ERREX
3530 72 INC HL
So35 LD (VFP+2) ,HL
S540 Ve LD BC, (VE +3)
S545 ADD HL, BC
S550 INC HL.
3555 TNC HL
2560 JV L.D (VAR) HL
S565 LD A, CHL)
S570 CF OBOH
2575 JR NZ,JX
3980 JW LD A,O
3585 JR JXL
2590 JX CALL VTYFPE
S595 JX FOF DE
2600 FOF 8c
34605 RET
2610 JS LD BC ,6
2615 J=xX ADD HL, BC
2620 JR J¥
3625 J4 JR J2
S630 JS CALL. FVEND
S635 JF ds
3640 J6 JR J2
3645 J7 LD BC,19
2650 JR J=X
3655 VAR DEFW ©
=660 VTIYPE Lp A, CHL)
3665 AND 128+644+22
2670 RLO A
3675 RLO A
2680 RLO @
2485 RLC A
2690 RET
“695 FVEND Lp HL, (VAR#) S700 INC HL
S705 FYV1 BIT 74 CHL) Z710 JR NZ,FV2

94

Chapter 9 Error handling and Parameter Name passing

3715 INC HL
B7 BO JR FV 1

2725 FV2 LD (VAR#) ,HL

3730 RET

Synopsis

PCALL passes the addresses of BASIC variables into your code routines.

This greatly eases the problem of data passing and most of the following

chapter routines use this or a related subroutine OPARS.

The first BASIC variable is assigned the name ERROR and line 2 of the

BASIC program is reserved for error routines.

95

CHAPTER 10

Floating Point Array Sort

“Beyond the mountains the grass is
greener’’’

German proverb

For those of the class who have struggled this far, let me present a useful,
practical routine, the sorting of an array of Spectrum format floating point
numbers. This is a simple bubble sort with no practical restrictions on the
size of the array. The time for execution depends on the square of the
number of entries and is roughly n2/7000 seconds for n entries — some 125
times faster than the equivalent BASIC routine. For 1000 entries the sort
would take about 145 seconds as against five hours.

Figure 10.1

SORT ROUTINE — TIMING DATA
a ° n*

t N5066 seconds

oO NS os sg

TIME (SECONDS)

S$ 8

> S

° 3 ¢ 5 6 7-8 4 0
ITEMS x100. N—»

97

Machine Code Applications for the Spectrum

er SORTF

SET UP PARAMETER
] PCALL ADDRESS TABLE.

COLLECT PARAMETER TYPE

Flowchart 10.1

SET UP LENGTH
ADDRESS

BC LLENGTH OF ENTRY
HLE =HEAD OF ENTRY
COLLECT # OF DIMENSIONS
MULTIPLY BY 2 (BY ADDITION) [LIMIT TO 127 DIMENSIONS !]
TO SKIP AROUND DIMENSION DATA
HFE= HEAD OF FIRST ENTRY

(SBODY)

D-¢ SET UP _D_AS ACTION MARKER
1X =HFE POINT TO EXPONENT OF FIRST ENTRY

COMPARE 2 FP NUMBERS POINTED TO
BY IX
(Z SET + SECOND = FIRST
CySET : SECOND > FIRST)

EXCHANGE. FP NUMBERS
AND SET D #9

(MovES 1x TO NEXT ENTRY)
HL=1X CLEAR Cy FLAG
BC=HLE (LAST ENTRY TEST)

CONTINUE.

SORT NOT
COMPLETED

AS n

[+ = sige sees] SORTF

SWOPF

STORE BC
B=5

EXCHANGE (IX+) WITH (IX+5) VIAAAND C
IXelX+1
BrB-1

RESTORE BC
SET D#0O

98

Chapter 10 Floating Point Array Sort

The bubble sort is not the fastest but it is the simplest. Adjacent entries in
the table are compared, and the larger, if it is not the earlier, swapped with
the smaller: the whole table is repeatedly scanned until no inversions are
made in a scan, at which point the table has been sorted and the routine
exits.

The first pass from top to bottom, will always carry the lowest value to
the bottom. If the next pass is made from bottom to top the highest value
will be carried to the top. With such a process the length of the unsorted
table is continuously reduced by one entry for each pass and the time
required can be reduced by around 50%. I will leave you to do this — I have
done the difficult bits, parameter passing and the comparison of the
floating point (FP) numbers.

SORTF

The routine separates into two sections. First the call of PCALL to set up
the parameter list and the extraction of the located parameter followed by
its checking. If the parameter is not of type 4 (array of numbers), the
routine exits having done nothing: then the variables HFE — head of first
entry — and HLE — head of last entry — are set up. As we have no
multiplication routine the skip over the array length data in the variable
area is done by setting the one byte of ‘number of dimensions’ into A and
then adding it to itself; the restriction being that A does not exceed 127! A
multi-dimension array is treated as being a single dimension array — the
highest value is placed in x(1,1,.. .)

The body of SORTFis straightforward. The D register is used to indicate
that an inversion has taken place — set in SWOPF — and COMPF
compares two adjacent numbers. COMPF exits with the Z flag set if the
numbers are equal and the C flag is set if the second is larger than the first.
The two FP numbers are adjacent to each other and the IX register points
to the exponent byte with the lower address.

Listing 10.1

3735 SORTF CALL PCALL
2740 LL.D HL, (FARMO)
S745 LD (TYP T+1) HL.
2750 TYPT LD A, (TYFT+1)
ay aba AND 1284+644+352
2760 CF 128
2745 RET NZ
R770 INC HL

99

Machine Code Applications for the Spectrum

3775

3780

3785

3790

S795

SBO0

2805

3810

3815

S820

S825

SB3O

3835
2B40

3845

S850

2855

2860

32865

3870

3875

=B80

388s

3890

3895
S900

S905

2910

S915

S920

2925

2930

S935

S940

3945

2950

2955

2960

29635

2970

39735

2980

2985

2990

100

FY I

SBODY

NCOMF

SAME

TNE XT

HFE
HLE
SWOFF

SWi

LD
LD

(PVL+2) HL
BC, (PV1i+2)
HL, BC

(HLE) , HL.
HL, (PFARMG)
BC, 3
HL. , BC
A, CHL)
A
cA
B,O
HL, BC
HL.
(HEE) ,HL.
D,o
IX, (HFE)
COMPF
Z, SAME
NC , SAME
SWOFF
TNEXT
EC, 5
IX, BC
IX
HL.
A
BC, (HLE)
HL, BC
NZ, NCOME:
A,D

A, (IX+0)
C, (IX+5)
(IX+0) ,C
(IX+5) ,A
LX

Chapter 10 Floating Point Array Sort

995 DINZ Swi
4000 FOF BC
4005 LOG D,l
4010 RET

COMPF

Figure 10.2 details the format of an FP number. The routine is quite com-
plicated and might be much simplified. IX points to the first (exponent)
byte of the first number whose mantissa is at IX + 1,2,3, & 4. The second
number has its exponent at IX + 5 and its mantissa at IX + 6,7,8 &9. The
signs of the numbers are in IX + 1 and IX + 6. If they differ, the positive
is greater than the negative. If they are of the same sign, their exponents
are compared. In the Spectrum representation the exponents are all offset
by 128 and the exponents may be compared and the carry flag tested. The
significance depends however on the sign of the mantissa. With positive
mantissas the larger exponent belongs to the larger FP number; with
negative mantissas the larger exponent belongs to the smaller FP number.
The B register is set non zero for negative mantissas.
Numbers with the same sign and equal exponents must be compared byte

by byte until a discrepancy, if any, is detected. The signed bytes, when
compared, must be tested by JP P,... or JP M,... operations as a carry
from a borrow will only be set with a negative number. The remaining
mantissa bytes can be tested on the carry flag as they are all unsigned. The
significance of the decision at BTL or BTG is decided on the sign, as
recorded in the B register, of the mantissa; failing to make this correction
will result in the positive numbers being separated from the negative ones
and both sets sorted in order of descending absolute (unsigned) size.

Listing 10.2

4015 COMFPF LD B,Q
4AO2o BIT 7, ¢IX+1)
4025 JF Z,CL1
4020 CLA BIT 7, (IX+6)
4035 JR Z,VILV2
4040 CLS LD A, (IX+0)
4045 CF (TX+5)
4050 JF M,ViGVS

101

Machine Code Applications for the Spectrum

4055 JF Z,CL4

4060 JR VILV2

4065 CL4 LL.D B,255
4070 JF XEQ

40735 Cul BIT 7, (IX+6)

4O8oO JR NZ,V1iGV2

40835 CLS LD A, (IX+5)
4090 CF CIX+0)

4095 JR C,ViGv2

4100 CLé JR NZ,VILVS

4105 XEQ LD A, (IX+1)

4110 CF (IX+6)

4115 JR Z,XEQM

4120 JF F,BTG

4125 JR BTL.

4130 XEQM LD A, (IX+2)

4135 CF (Ik+7)

4140 JF C,BTL

4145 JF NZ,BTG

4150 L.D A, (1X+3)

4155 CF CIX+8)

4160 JF C,BTL

4165 JR NZ,BTG

4170 L.D A, CIX+4)

4175 i (IX+9)

4180 JR C,BTL

41985 JF NZ,ETG

4190 RET

4195 ViGV2 Lp As

4200 CF 1

4208 RET

4210 ViILVS LD ys

4215 CF mis

422g RET

4225 BTL. BIT 1,8

4230 JF NZ,ViGV2

4235 JR VILVS

4240 EBTG BIT 1,8

4245 JF NZ,VILV2

250 JR ViGV2

102

Chapter 10 Floating Point Array Sort

Flowchart 10.2 4

B=O CLEAR -V@ MANTISSAS FLAG

TEST SIGN BIT OF FIRST MANTISSA

N1-Vé no YES _bit 7=0

TEST SIGN BIT OF SECOND MANTISSA
Ni-ve
N2+ve YES

BOTH MANTISSAS - VE

COMPARE EXPONENT BYTES
FLAGS= 1X9) - (X45)

y aE 92

Ni+Vé

EXPONENTS EQUAL TEST SIGN BIT OF SECOND
MANTISSAS BOTH -V@
USE B pee AS A FLAG

LARGER EXPONENT
MORE - ve

COMPARE EXPONENT BYTES
Y2-¥2 FLAGSS (1X+5) - (1X0)

2. %
YES

LARGER EXPONENT
LARGER VALUE

LOWER EXPONENT
LOWER VALUE

EXPONENTS EQUAL
MANTISSAS BOTH +V@

FLAGS = (1X+2)-(1X+7
(SECOND M, 932 wy)

le)

NO

(rate anriosa By ibs)

LAGS = (IX+4
FOURTH MAWNTIS:

CLEAR Z FLAG CLEAR Z FLAG
SET CARRY FLAG ‘CLEAR CARRY FLAG

— SZ
103

Machine Code Applications for the Spectrum

Figure 10.2

NOSIYVaWO9

Beak.

|

SA
LA
E

V
S
S
I
L
N
V
W

G
A
N
Y
I
S
N
N

V
S
S
I
L
N
U
W

)
o
Y

y
1

\
<
—
—
—
—
_

WS
SL

LN
YW

| >

|

L
N

xa

1
6

g
4

!
9

'
§

|

|

LI
G

NI
IS

LS
Yl

A
F
H
L
O
L

SL
IN
IO
d

X|

S
A
L
A

AA
NL

LA
IA

SN
OI

O|

NI

B
U
Y

AS
HL

I
V
W
W
Y
O
4

W
N
Y
L
O
F
Z
d
S

-
S
Y
S
E
W
O
N

-L
Nl
od

YN
IL
WO
Id

Z
40

NO
SI
YY
dA
WO
?

104

Chapter 10 Floating Point Array Sort

SORTF — a practical example

To print a list of competitors in order of descending points. (There are not
more than 999 competitors and their points/times may be represented by a
number less than six digits.

The data is in an array a(), the points of competitor n are in a(n). If we
sort a() we will indeed put the entries in numerical value order but we will
lose the competitor identification.

If we code in BASIC:

FORn = 1TO...

LET a(n) = 1000* a(n) +n

NEXT n

then each entry will contain both pieces of information; as decimal digits
the last three will identify the competitor and the others the points of that
competitor. Note that because of the way the Spectrum handles floating
point numbers the apparent value of a (n) should not be greater than about
1 000 000 000. We can now write:

LET 1 = USR SORTF

REM a():

and the array will be sorted with the higher marks first and the competitor
number trailing along behind as the last three digits. The nth entry can then
be printed by:

PRINT INT (a(n)/1000); INT(a(n) — 1000* INT(a(n)/1000))

There is just one other consideration. Some entries in a(_) may be stored
in the integer form internally, which will upset SORTF. Before using it,
each element must be in floating point form, and the best way to do this is
to use something like

LET a(i) = a(i) + 65537 — 65537

For an M entry list the program looks like:

FORn = 1TOm
LET a(n) = 1000* a(n) + n + 100000
NEXT n

LET 1 = USR SORTF
REM a():

FORn=1TOm

LET a(n) = a(n) — 100000
PRINT INT(a(n)/1000); INT(a(n) — 1000*INT(a(n)/1000))
NEXT n

105

Machine Code Applications for the Spectrum

which will print the points followed by the competitor number. Where two

competitors have the same number of points the output will be in

descending competitor number order.

All you need to do is get the data into a() to start with and the routine

will do the rest in the twinkling of an eye.

106

CHAPTER 11

Passing other Parameters

So far we have only a few routines which we call from the BASIC. It is quite
easy to assemble each separately (with its own load address and its own
copies of common subroutines), load them and remember to call them
correctly as required. The drawbacks become evident when they have
many subroutines in common and these are needlessly multiplied.

The solution I have adopted is shown in Listing 11.1. All the routines
etc., are assembled together (or as many as are needed) and they are called
through identical code sequences, which are thus all of the same length.
First the SP save for the error escape back to line 2 (Chapter 9); then the
storing of all the used registers, the specific subroutine call — DRAWL,
MAP$etc., and finally the jump to the common return label TRAP$ where
the registers are restored and the RET to BASIC is made.

Listing 11.1

OOOS ORG 640000
OOLO LD (ERROR) , SF
OO1LS FUSH AF
OO20 FUSH BC
NO25 FUSH DE
OOO FUSH HL
OO35 FUSH Ix
0040 CALL DRAWL
O04s JF TRAPS
oOos50 LD (ERROR) , SF
oosg5 PUSH AF
0060 FUSH BC
0065 FUSH DE
OO7O FUSH HL
0075 PUSH IX
Oo080 CALL SATTR
008s JF TRAPS
0090 LD (ERROR) , SF.
0095 PUSH AF

107

Machine Code Applications for the Spectrum

O100

O105
O110

O115

O120

O125

O10

OL35
O140

O145

O150

QO1S5

0160
0165

0170

O175

0180

O18s

0190

O195

O200

0205

O210

O215

O220

O225

OBO

O235
o240

0245
oO250

o255
0260

0265
O270

O275

O2B80

O285

OBSO

O295

OS00

O205

O310

O215

108

PUSH

TRAFS

TRAF'E

TRAPS

1. oP

, SF

SF

, SF

Chapter 11 Passing other Parameters

These common entries are all 16 bytes long and the routines can be called

as an offset to the load address:

DRAWL at USR+0

SATTR at USR+16
BLOCK at USR + 32

and so on. (The head of) a BASIC program could then look like Listing

11.2. This has the advantage that, if the load address has to be changed,

only line 10 needs attention and, after the initial setting up, the routines

can be called by mnemonics instead of numerial values. (The routines

SATTR and DRAWL are described in Chapters 13 and 14).

Listing 11.2

1 LET error=90: GO TO 16

2 FRINT "ERROR ="serror:s STOF

16 LET base=460000
11 LET drawl=baseto

12 LET sattr=baset16

12 LET block=base+t32

14 LET sortf=baset49
15 LET gcell=baset+64

16 LET map=baset8o
17 LET ivert=baset+96

18 LET movec=baset112

19 LET svert=baset126

29 LET drawa=baset144

21 LET demol=baset140

22 LET demo2=baset+174
<4 60 SUB 70: FAUSE 200: GO SUB BO: GO SUE
200: GO SUB 300: GO SUB 400: GO SUB

9000; GO TO 21

30 LET b=250

41 DIM k#¥(b,2)

42 FOR x=1 TO b

45 LET k#(x,1)= CHR 255

44 LET k¥(x,2)= CHRE 255

45 NEXT x

SO LET k=O

Sl LET ol=0

93 LET l= USR movec

24 REM read cursor postian

109

Machine Code Applications for the Spectrum

56 FRINT AT G,O," "s FRINT AT
O,O;1: PORE 23540,255

27 IF l=ol THEN LET 1=65535
98 LET k=k+1

99 LET k#(k,2)= CHR INT (1/256)
60 LET k#(k,1)= CHRE INT (1-254*¢ INT
(1/256)))

61 IF ki THEN GO TO 58

= LET m= USR drawa

63 REM k#O):

64 LET ol=1]

65 FRINT AT O,ésk

664 GO TO 53

70 LET l= USR sattr
Oa REM 20505 Lost bo O
72 LET l= USR sattr
75 REM 216.12 551523 16.
74 LET l= USR sattr

7S REM :24,0,31,4,24,
76 RETURN

80 LET l= USR map
81 RETURN

100 LOAD "" CODE : LOAD "" CODE : GO TO 1
290 DIM a(44)

©O1 FOR m=1 TO 44
202 LET a(m)= RND #107 C INT (¢CZO# FIND 9-159)
203 NEXT m

294 GO SUB 220

295 LET l= USR sortf
296 REM ad):

©O7 FAUSE 1

£08 GO SUB 220

299 RETURN

220 CLS

22l FOR m=1 TO 44 STEF 2
eee FRINT atm) ,acmt+1}
cao NEXT m

224 RETURN
“00 PRINT AT 3,5:

S01 FOR k=O TO 255

202 LET l=deamol

2035 REM k:90,0,14,7,
204 NEXT k

210 RETURN

"TILE COLOUR DEMO."

110

Chapter 11 Passing other Parameters

400 DIM (5
401 FOR g=1 TO 500
402 LET g(S)= INT (255 RND)
403 LET gC3)= INT C31i# RND)
404 LET g(4)= INT (23% RND)
405 LET g(i)= INT (g(3)* RND }
406 LET g(3)= INT (g(4)* RND)
407 LET l= USR demo?
408 NEXT g
409 RETURN

9000 FOKE 23675,0: FORE 23676,150
9001 FOR x=0 TO 224 STEF 2
9002 LET l= USR gcell
9003 POKE 38400, x
9004 NEXT x: RETURN

I now have some explaining to do — the REM statements in Listing 11.2.
Back in Chapter 9 I showed how variable NAMES could be passed into
machine code, but skipped over as too complicated for then, the passing of
numeric values and strings. In Chapter 10 we used a passed array name to
provide the required pointer(s) for SORTF. Now we will deal with the
omissions of Chapter 10.

OPARS (Other Parameters)

These must be compatible with the name parameters collected by PCALL,
that is, be present in the same REM line along with the name parameters.
The easiest way is to rely on splitting the parameter list into two parts: first
the names terminated by a colon and then, after the colon the values and
strings. We allow the possibility that there are no name parameters but still
insist on the colon as marking the start of the value / string part.

The specification for these parameters is:

Each entry, including the last, is terminated by a comma.

The REM statement is terminated by an ENTER token.

Values are unsigned, 16 bit integers. (Their values are to be found in the
variables VPARO, VPARO +2 etc.)

Strings are deliminated by double quotation marks (‘‘), may be of any
length and must be terminated by a comma after the closing quotes. A
string must not contain double quotes. The address of the first character in
each string is to be found in the variables SPARO, SPARO + 2, etc.

111

Machine Code Applications for the Spectrum

No data is passed concerning the relative positions of the values and

strings in the parameter list; only their relative positions within each class

are preserved.

To enable 0 to be passed as a value a subsidiary byte, SBITZ is used and

has bits 7,6,... set according to whether VPARO, VPAR+2 etc. are

valid.

OPARS will force error exits:

10 failed to find end of REM statement

11 non digit in number

12 too many parameters (more than 6)

13 false read of number

14 number greater than 65535

Listing 11.3

4255 OPARS LD HL. , SFARO

4260 LD (SFZ) , HL
4265 LD HL, VF ARO
4270 L.D (VEZ) HL

4275 L.D HL. ©
4280 L.D (SFARO) , HL
4285 LD HL, SFARO

42oo LD DE, SFARO+1

4295 LD BRC ,SBRITZ-SFARO+1
300 LDIR

305 LD HL, (NX TLD
41a INC HL

4315 INC HL

4320 L.D (VF L+2) ,HL
4325 VEL LD BC, (VFPL+2)

230 INC HL
Sibel INC HL

4340 GNEBi CALL GETEY

4345 CF 13

4350 RET Zz
ben be) CF a

AZo JR NZ,GNEL

4365 GNES CALL GETBY
4370 CF 13

4375 RET Zz

4280 CF Morey

112

Chapter 11 Passing other Parameters

S85) Jr Z,GNE2
43S90Q Cr non
4395 JR Z, EOF AR
4400 CE woes

4405 JF 2Z,STSTR
4410 Cr ne

4415 JF M,ERXil
4420 CF Wau

4425 JF P,FERX1i1

4435 SUB woe

4440 FUSH HL.
4445 PUSH BC
4450 or A

4455 LD HL, (NUMB)
4460 ADD HL,HL
4465 JR C,ERX14
4470 ADD HL, HL.
4475 JR C,ERX14

4480 LD BC, (NUME)
4495 ADD HL,BC
4490 his C,ERX14

4495 ADD HL, HL.
4500 JR C,ERXi4
4505 LD B , QO

4510 LD CYA

4515 ADD HL,BC
4520 JR C,ERX14
4525) LD (NUMB) , HL
4530 LD. yd
4525 LD (NNR) 5A
AS4o0 FOF BC
4545 FOF HL
ASSO JR GNE2
4555 ERX14 pb DE,14
4S CALL ERREX
4565 EQFAR FUSH HL
4570 FUSH BC
4AS75 LD A, (NNR)
4580 cr oO
4585 Je Z,ERX1i3

4590 LD A, (SEITZ)
4595 SRL A

4600 SET 7,A

113

Machine Code Applications for the Spectrum

4605 LD (SBITZ) ,A
4610 LD Hi., (NUMB)
4615 LD BC, (VFZ)
4620 LD (VPLZ+1),BC
4625 VFL LD (YVPL24+1) ,HL
4630 INC EC
46355 INC BC
4640 LD (VF Z) BO
4645 LD HL. , NUMB+2
4650 OR A

4655 SBC HL,BC
4660 JF Z,ERXi2
4665 LD HL, ©
AG7O LD CNUME) , HL
4&7 LD A,o
4680 LD (NNEOD , A
4685) FOF BC
4690 FOF HL
4495 JF GNE2
4700 STSTR FUSH HL
ATOS FUSH BC
A710 EX DE, HL
4715 LD BC, (SFZ)
4720 LD HL, VF ARO
4725 OF ay
AT3Q SBC HL,EBC
AT 35 JR Z,ERX12
4740 EX DE, HL.
474s LD (VFLS+1),BC
4750 VPLS L.D (VEPLS+1) ,HL
4755 INC BC
4760 INC BC
4765 LD (SFZ),BC
4770 FOF BC
4775 FOP HL
4780 RFORC CALL GETBY
A785 CF vate uate

A79Q Jr NZ, REORC
4795 GNBS CALL GETBY
4800 cre tea:
4805 JF Z,GNE2

4810 CF 2
4815) RET Zz
4820 JF GNBS |

114

Chapter 11 Passing other Parameters

4925 GETBY DEC BC
Ago BIT 7,
4835 JR NZ,ERX1O
4840 LD A, CHL)
4845 INC HL
4gso RET
49355 ERX10 LD DE,10

4860 ERXAA CALL ERREX
4865 ERX11 LD DE,11

4870 JR ER XAA
46875 ERK12 LD DE,12

4880 JR ERXAA

4985 ERX13 Lp DE,13

4890 JR ERXAA
4893 VEZ DEFW ©

4900 SPZ DEFW ©

4905 SFARG DEFW a
4A91o DEFW ©

4AGiSs DEFW ©

4920 DEFW ©
4925 DEFW ©

4AGad DEFW ©

49235 VFARG DEFW o
4940 DEFW ©

4AGaS DEFW ©

4GSo DEFW ©

4935 DEFW ©

4960 DEFW ©

4°65 NUME DEFW ©
4970 NNF DEFER ©

4975 SBITZ DEFB o
4980 DEFW ©

Operation

As the routine may well be called many times all the workspace is first
cleared and the result pointers, SPZ for strings and VPZ for values, are set
to point to the heads of their respective lists, SPARO and VPARO.

At VPL BC is loaded with the number of characters in the parameter line
following the call of USR... and HL is set up to point to the first byte.
GETBY reads bytes in sequence using HL and decrementing BC (error 10if
BC goes negative) which are preserved for this use; the read character is in
the A register.

115

Machine Code Applications for the Spectrum

Flowchart 11.1

OPARS

CLEAR OUTPUT TABLE. AREA
INITIALISE POINTERS SPZ + VPZ
SET HL TO HEAD OF PARAMETER DA

(CTO LENGTH OF REM LINE. (BYTES)

READ To <

> =< nerve HERE. AFTER

END OF STRING —
‘T END OF NUM

omit sPAad Cas) ; Gn) NO Cane Sts

Cope & HL+ BC YES No MOVE HUTO Mist CHARACTER
OF SUBYECT STRING tC Aca» No

NOT A mn sip OST YES
l ERROR 11 |

A= BIN VALUE FOR DIGIT
FORM LOAD INSTRUCTION

STORE Ht+ E Be
CLEAR

HL=NUOMBER Bene t READ STORE STRING ADDRESS
MULTIPLY HL BY 10 AND ADD IN VALUE
OF BYTE JUST REA
CHECK Cy BIT AT AL STAGES
STORE PARTIAL RESULT IN NUMB
SET NNR#@ RESTORE HL + BC

|
FORM NEXT STRING STORE ADDRESS STORE IN PZ. OVERFLOW EXIT

RESTORE HL+ BC] ERROR 14

& oy
STORE. BC+ HL

READ To END
OF STRING

SET FLAG BIT IN 38IT2
COMPUTE LOAD INSTRUCTION

LOAD NUMB INTO VPAR TABLE
SET UP NEW VPZ. FOR NEXT

ERROR |3

CONTINUE AFTER RESTORE HL+ BC
END OF STRING | ERROR 12

CONTINUE.
AFTER END
OF NUMBER

LOAD A WITH
BYTE
INCREMENT H
(BYTE. POINTER)

116

Chapter 11 Passing other Parameters

At GNBI characters are ready until either a 13 (ENTER token) or a: is
met; the colon marks the end of the name parameter part which may be
empty.

At GNB2, the characters after the colon are analysed; a 13 terminates the
routine; spaces are ignored; a comma is recognised as an End Of
PARameter (jump to EOPAR) and a double quote is recognised as the
start of a string parameter to be dealt with at STart STRing (jump to
STSTR). Anything left must be a (decimal) digit or an error.

Numbers

The ASCII codes for digits run sequentially from 48,, for 0 to 58,, for 9
and the colon has ASCII code 59,,. Subtracting the code for 0 leaves a
valid binary representation of the digit just obtained.
The HL and BC registers are saved for their next use by GETBY and HL

loaded with NUMB which holds the partial result of this value evaluation
(or zero). HL is multiplied by 10 through shifting and addition and then A
is added in to give the new partial result which is restored in NUMB. At
each stage HL is tested for overflow and error 10 is generated if need be.
NNR is set non-zero as an indicator that a number is being read and HL,
BC are restored ready to read the next input byte.

End Of PARameter (EOPAR)

If NNR is not set, an error condition (double commas or missing value)
raises error 13, otherwise a valid number has been read and a new bit is set
in SBITZ. If the number were zero the VPAR entry would be zero. So a
non-zero entry cannot be used as a test for the presence of an entry as it can
be in SPAR for strings since 0 is head of memory in ROM. VPL2 is a
computed load address for HL into the VPAR list and then VPZ is
incremented by 2 to point to the next two byte entry. If it points to
NUMB + 2 the table has overflowed and error 12 is generated. NUMB and
NNR are cleared in readiness for the next value parameter.

N.B. The sequence of the labels VPZ to SBITZ should not be altered
although the number of elements in the VPAR and SPAR lists may be
changed.

String start (STSTR)

HL points to a byte just after the double quote which has been read by
GETBY. HL and BC are stored, and HL — the address of the first
character in the string — is stored in DE; OR A clears any carry flag and
SPZ is tested against VPARO which marks the end of the SPAR list. Error
12 is again generated if there are too many string parameters. VPL3 is a
computed load of the restored HL (from DE) into the string address table.

117

Machine Code Applications for the Spectrum

After the string address table has been loaded RFORC reads down the

string for the terminating double quote and then to the concluding comma

or terminating 13 token.

Synopsis

OPARS allows constants, integer values and strings to be passed into your

machine code from the BASIC program. These parameters must follow a

colon in the REM statement.

118

CHAPTER 12

BASIC Block Delete

If you wish to remove a section of lines from your BASIC program,

because it has become obsolete for example, Then you normally have to

type in each line number in turn, which can be very time consuming. Many

other micros have a DELETE a,b or similar command which removes all

lines from a to b. The following routine uses OPARS to delete any

number of lines. It is best to refer to page 166 of the Spectrum manual

while following this routine. It requires two value parameters, both line

numbers, and deletes from the first up to, but not including, the second.

The technique is one of individual line deletion followed by the adjust-

ment of VARS. The BASIC system should be set up by CLEAR com-

mands both before and, especially, after running the routine.

First some subroutines to collect individual lines for examination (see

Flowchart 12.1). Note that they are essentially different ways of entering a

common block of code.

SUPLN

Sets UP LiNe pointers, used by the other routines, to point to the first line
of the BASIC program; it and the others all destroy their input registers
and exit as follows:

HL contains the (new) line number

BC the length, in bytes, of the line of data

DE points to the first character of the line
Z flag set if there is no more data

The variables M1, M2, M3, M4, and MS are used as follows:

Ml address of first byte of line number

M2 length of this line in bytes (= BC)

M3 line number of this line (= HL)

M4—M5 _ temporary storage while a line is being deleted

119

Machine Code Applications for the Spectrum

Flowchart 12.1

(CONTINUE) CNXLN SUPLN (SET uP)

HL = OLD HEAD ADDRESS
BC=0 GTH
HL== HL+BC+4 HL= HEAD OF BASIC

HL RESTORE TO Bee = HEAD OF VARIABLES LINE IN HL CLEAR Cy (END OF green

M1=HL

HL=M

HL=HL+2 POINTTO LENGTH BYTES
: COMPUTE LOAD BC

BC =LENGTH OF LINE
M2=BC
MbsHL+2
ere = FIRST BYTE OF LINE (ADDRESS)

"COMPUTE LOAD HL(WITH LINE. NO.)

-
HL= ae NO. NO. Ore IRUM STYLE)
SWOP H
M3e Line NO. (LS BYTE FIRST)

HL = LINE # SAND M3)
BC = LENGTH OF LINE
DE= ADDRESS OF FIRST BYTE
Mi= LINE # ADDRESS

(COLLECT LINE DATA FROM BASIC PROGRAM)

120

Listing 12.1

4985 SUFLN

4990 SUFLM

4995
SOO00

5005

S010

S015

HOLO SUPLL.

SOLS
5OR0

9035 SFLA

2040

S045

BOSO

SOSS

SOGO

5065

9070 SFLE

SO75
SO80

S085

DO9IO

5095

3100 CNXLN

S105

S110

o115

S120

S125

S130

5135

2140 RESLN

3145

S150 Mi

2155 M2

u160 MS

3165 M4

s1l7O MS

5175 FROGS

Chapter 12 BASIC Block Delete

HL, (PROG#)
(M1) HL
BC, (VARSS)
A
HL. , BC
Z
HL, (M1)
HL.
HL.
(SPLA+2) ,HL
BC, (SFLA+2)

(SPLB+1) ,HL
HL, (SFLE+1)

BC, (M2)
HL, (M1)
HL, BC

121

Machine Code Applications for the Spectrum

Flowchart 12.2

122

BLOCK

VPARG START LINE NO
VPAR@+2 END LINE NO

SET _UP LINE EXTRACTION
ROUTINES

BG? START LINE NO
LINE # TOO LOW HLT HL-BC

HL=HL+BC RESTORE FROM
BC= END LINE NO
CLEAR Cy FLAG
HL, HL BO

NO

THIS LINE TO BE LINE NO. Too DELETED
HIGH OR= END

HL= HEAD ADDRESS
petals LINE

M5= Mi (HEAD OF
NEXT LINE)

HL>VARSS END OF BASIC + 1
BC=M5

HL = HL-BC LENGTH TO BE MOVED
BC= HL
HL=M5
DE = M4

LDIR MOVES DATA FROM HL) DE
HL = = LENGTH LOST (IN BYTES,
BC = VARSS
RESET END OF PROGRAM POINTER
HL = M4 (HEAD OF DATA JUST MOVED UP)

Chapter 12 BASIC Block Delete

CNXLN (Continue with NeXt LiNe)

This sets up the registers in a similar way to SUPLN, but for the next line in

the program. It sets HL not to PROG, as SUPLN does, but to

M1+M2+4, which is the first byte of the next line.

RESLN (REStore LiNe)

After a line has been deleted the old line location(s) now contains the head

of the next, non deleted line. RESLN resets the registers and storage

locations for his new line.

Operation of SUPLN

On entry HL contains the location of a line, initially the first one. This

address is stored in M1 and compared with the value of VARS. The RET Z

will return if the HL has reached VARS ie there are no more lines.

At SUPLL, HL is incremented by two to point to the line length bytes

and this value is stored in SPLA + 2, which is the second half of the next

instruction. The computed instruction at SPLA loads BC with the length

of the current line, and it is stored in M2. The computed instruction at

SPLB then loads HL with the line number, which is reversed, so registers H

and L are swopped, stored in M3 and a return made. In all normal

circumstances the Z flag will be unset because no instruction apart from the

SBC test after SUPLM will affect any flag. Take care that at the entry

RESLN the Z flag is NOT set.

Operation of BLOCK (see Flowchart 12.2)

BLOCK expects two parameters and its call will look like:

LETL=USR...

REM : 174, 8234,

Should the second parameter be less than the first no action will take place.

OPARS is called to read the two parameters which will be located in

VPARO and VPARO + 2 as two 16 bit numbers.

SBITZ is checked to ensure that only two parameters are present (error

20 otherwise) and the value of the second parameter is checked to be a valid

line number (less than 10000). SUPLN is now called to point to the first

BASIC line and at TSTLN the line number is checked against the value of

the first parameter; if the value is too small CNXLN is called to collect the

next line and the process repeated whilst lines remain to be checked; if the

line number is equal or greater than the first parameter a jump is made to

BDLE1.

123

Machine Code Applications for the Spectrum

Listing 12.2

3180

S185

S190
S195

S2OO

S205

we2lo

s215

220

S225
5230

bar
5240

245

aeud

5255

5260

ae26s

g270

5275

5280

5285
5290

5295
ha O18)

S305

2310

S215

S320
“Toe
toatl be teal

S30

S335
5340

o345

S350

Ker Be be]
5240

3365

S270

aa75

S380

124

BLOCK

BLAR

BLA

TSTLN

BDLEL

BDLES

OF ARS
A, (SBITZ)
128+64
Z,BLA

DE , 20
ERREX
HL, (VFARO+2)

BC, 10000

A
HL, BC
FP, BLRE
SUPLN
BC, (VFARO)
A
HL, BC
FY BDLEL
CNXLN
Z,BDONE
TSTLN
HL. , BC
BC, (VPARQ+2)
A
HL. , BC
F,BDONE
HL, (M1)
(M4) ,HL
CNXLN
Z,BDONE
HL, (M1)
(MS) , HL
HL, (VARSS)
BC, (MS)
A
HL, BC
HL
BC
HL, (MS)
DE, (M4)

A
HL, (MS)

Chapter 12 BASIC Block Delete

5285 LD BC, (M4)
5390 SBC HL,BC
5395 FUSH HL.
5400 FOF BC
5405 LD HL, (VARSS)
S410 SBC HL,BC
S415 LD (VARSS) ,HL
5420 LD HL, (M4)
5425 CALL RESLN
54350 JR NZ,TSTLN
54235 BDONE RET

BDLE1

The line number is now checked against the second parameter, the upper
line limit. If this is less than the limit the line is to be deleted at BDLE2,
otherwise the routine exits at BDONE to the cruel, cold world of a
diminished BASIC program.

BDLE2

This line is to be deleted. The head address is stored in M4 and CNXLN is
called to determine the head address and presence of the next line. BLOCK
specifically will not delete the last line of the BASIC program.
BC is loaded with the number of bytes to be retained (from the head of

the line called up by CNXLN up to the address in VARS) and DE/HL are
set so that the LDIR instruction will move everything up, so covering the
unwanted line. VARS is then reduced by the total length of the removed
line and RESLN called (with the Z flag not set).

The process is now repeated at TSTLN where the next line is tested and,
if need be, deleted.

125

CHAPTER 13

Setting the Attributes Area

The attributes area controls the INK and PAPER colours and the
BRIGHT and FLASHing status of each character square. They are ar-
ranged sequentially from location 22528, in the form of 24 rows of 32 col-
umns. This routine allows you to set all or any of the attributes for a rec-
tangular area by specifying the top left and bottom right hand tiles of the
area involved, together with the required attribute(s) byte.

The call is

LET L = USR...
REM :X,, Y,, X,, Y,. A,

The Xs must be in the range 0-31 and the Ys in the range 0—23. The A

value is the decimal number, collected from Figure 13.1 which defines what

is to happen at a tile position. Remember, you can disguise a messy screen

redrawing by setting paper and ink colours the same to start with and then

revealing all by setting them differently when done.

Two errors may be generated by the routine:

30 ‘top left’ corner below or to the right of ‘bottom right’ corner

31 either specified tile is outside the attributes area

Operation (see Flowchart 13.1)

OPARS collects the value parameters which are assumed to be present, and

STRTA is calculated to be the address of the first attributes byte to be
loaded.

CDIFF holds the difference + 1 in the tile columns (X values) specified

and RDIFF the row difference + 1. If either the row or column values are

the same a single row or column will be handled. When several calls are

made remember that where a bottom right corner of one call is the same as

the top left corner of another there will be a one tile overlap with the later

overwriting the earlier.

Once RDIFF and CDIFF have been set up the double loop in the routine

ATTRL F 13 write RDIFF rows of CDIFF attributes; each row of

attributes commences 32 bytes beyond the start of the previous row and

there are none of the complications of pixel plotting to be dealt with.

127

Machine Code Applications for the Spectrum

Figure 13.1

S
A
O
N
V
I
I
S
I
N
Z
I
S

Li
d

-
V
A
Y

S
A
L
A
S
I
Y

L
L
Y

N
I

S
L
U
M

A
N
V

Y
A
d
v
d

N
J
?

O
N
I
H
S
V

1
4

AN
ID

C
I
N
O
M

L
9
1
=
/
+
Z
E

+
BT
ZI

OS

S
L
H
M

Z

9S

mM
oT
Ia
A

9 «|

Bb

NV
WA
D

Ob

N
a
)

+
|

&

V
I
N
S
I
V
W

¢ 74

qa
u¥

Z
|

9!

an
ne

1
g

w
v
i
g

O
|

O

128

Flowchart 13.1

SATTR

MY
COMPUTE ADDRESS OF FIRST ATTRIBUTES BYTE

H ERROR 3! i

A=LIN,— LIN,

RDIFF= A

ATTRB = VPAR®G+8

| ATTRL | ERROR 3o

129

Chapter 13 Setting the Attributes Area

Machine Code Applications for the Spectrum

Flowchart 13.2

ATTRL

yy RDIFF NUMBER OF ROWS
HL=FIRST ATTRIBUTES BYTE ADDRESS

STACK BC
STACK HL

B=CDIFF NUMBER OF BYTES /ROW
A=ATTRB ATTRIBUTES

WRITE TO ATTRIBUTES AREA

DECREMENT ROW BYTE COUNT

RESTORE HL
HL=HL+32 MOVE To

RESTORE BC NEXTROW

B-B-1 DECREMENT
ROW COUNT

Listing 13.1

so10

Sag15

ba bor
S525

S530

SoS5

5540

2545

S550

Kal ba as ba

3560

5565
So70

S575

5580

S585

S59Q

SSeS
SGOO

S605

2610

9615

S620

S625

S630

S635

5640
5645

S650

S65
5660

5665

5670

9675

5680

3685
6PO

54695
5700

5705

3710

SATTR

ATTRE
CDIFF
RDIFF

CALL

DEFR
DEFEB

Chapter 13 Setting the Attributes Area

OF ARS
HL, (VEARO+2)
HL, HL
HL. HL.
HL, HL.
HL. , HL.
HL, HL.
BC, (VFARO)
HL. , BC
BC, 1629446144
HL., BC
(STRTA) ,HL
A, (VFARO)
me
seat ae

FY ERX 24
EA
A, (VPARO+4)

FY ERX S41
B
C,ERXS0
A
(CDIFF) ,A
A, (VFARO+2)
24
FY ERXS1
BA
A, (VFARO+6)
24
FY ERXS1
E
C,ERX30
A
(RDIFF) A
A, (VPFARO+8)
(ATTRE) A
ATTRL

O

ra)

oO

131

Machine Code Applications for the Spectrum

S715 STRTA DEFW ©

o720 ERX20 LD DE, 30
a725 CALL ERREX
S730 ERX31 LD DE, 31
7235 CALL. ERREX

Listing 13.2

) 5740 ATTRL LD A, (RDIFF)
5745 LD B,A

| 5750 LD HL, (STRTA)
5755 ATTRN FUSH BC
5740 FUSH HL.
5765 LD A, (CDIFF)
5770 LD #B,A
5775 LD A, (ATTRE)
5780 ATTRM LD (HL) 4A

| 57385 INC HL
| 5790 DINZ ATTRM
| 5795 FOF HL
1) 5800 LD BC,32
if 5905 ADD HL,BC
i 5810 FOF BC
i 5815 DINZ ATTRN

520 RET

132

CHAPTER 14

Hi Res Graphics

The Spectrum has a display resolution of 256 pixels horizontally by 192
vertically. In this chapter there are routines to draw lines and move acursor
across it, and an elementary drawing program is also presented.

The only way to draw a line between two points on the Spectrum display
is to plot, point by point, all possible points on the line from X,, Y,toX,, Y,
and preferably to do it quickly.
One way to do it which gives reasonable results is as follows: find

increments DX and DY, not necessarily integer or positive, in X and Y
which can be repeatedly added to X,, Y, and which will cause X,, Y, to
move towards and reach X,, Y,. This is, in principle, what happens when
you draw a line with a straight edge on graph paper.

Problems now arise. How are we to deal with the fractions when we have
only dealt so far with integers? Fear not! The answer lies not with floating
point numbers but with scaling.

Scaling is a very common technique in machine code programming for
dealing with values outside the normal byte or word range of the machine.
By way of example we will take the points in X and Y on the display screen
to be given by 16 bit numbers; the MS byte will represent actual plottable
points and the LS byte the fractional, non plottable, parts.
We take the arithmetic (ie signed) differences between the Xs and

between the Ys and divide each by 256 (by changing the byte significance)
to generate the differences DX and DY. This will always work as the largest
difference between two Xs can only be 255, but we must remember to treat
DX and DY as 16 bit values and propagate their sign bits through the MS
byte. To reduce the plotting work to be done DX and DY are both shifted
left until their most significant digit amounts to one quarter of a plotted
point; more than this results in a ragged line, less takes longer, the choice is
yours and you ought to experiment by modifying the routine SDIFF which
sets up DX and DY before they are used.

Listing 14.1

S825 FLINE CALL OFARS
S830 LD A, (VF ARG)

133

ll

Machine Code Applications for the Spectrum

S835 LD B,A

5840 L.D A, (VFARO+2)

5845 LD C,A

5850 LD A, (VF ARO+4)
S855 LD D,A

9B60 LD A, (VF ARO+46)
5865 LD E,A

3870 XLINE LD (YO+1) ,BC

5875 LD (XO) ,BC

5880 LD (Yit1) ,DE
5885 LD (X1),DE

5890 L.D A,o

5895 LD (XO) ,A
5900 LD (X1),A

S905 LD (YO) ,A

5910 LD (Y1),A

S915 LD (DX) ,A

5920 LD HL, (X1+1)

5925 LD BC, (XO+1)

3930 OR A

S935 SBC HL.,BC

5940 L.D (DX) ,HL

S945 LD (OLDDX) ,HL

5950 L.D HL, (Y1+1)

5955 LD BC, (YO+r1L)
5960 OR A

5965 SBC HL,BC

3970 LD (DY) ,HL

5975 LD (OLDDY) , HL.

5980 CALL. SDIFF

5985 NPOIN LD A, (YO+1)

S99O LD B,A

5995 LD D,A

6000 LD A, (XO+1)
6005 LD C,A

6010 LD E,A

6015 CALL. FLOT
6020 INVFT OR CHL}

4025 LD CHL? A

6030 CALL LFOIN

6035 RET Z

6040 GNXFT LD HL, (XO)

6045 LD BC, (OLDDX)

6050 ADD HL,BC

134

6055

6060

S065

6070

S075

60B0

6085

6090

6095

6100

6105

6110

6115

61230

6125

S130

6135

6140

6145

6150

6155

6160

61465

6170

6175

4180

6185

6190

6195

6200

6205

6210

6215

6220

6225

6230

6235

6240

6245

6250

62355
6260

6265
6270

LFOIN

SDIFH
SDIFG

SDIFA

(XO) J HL
HL., (YO)
BC, (OLDDY)
HL, BC
(YO) JHE
A, (YO+1)
D
NZ,NFOIN
A, (XO+1)
E
Z,GNXET
NFOIN
A, (XO+1)
EA
A, (X1+1)
BE

NZ
A, (YO+#1)
EA
A, (Y1+1)

HL, (DX)
A,H
OQ

Z,SDIFA
255
NZ
HL, (DY)
A,H
QO

Chapter 14 Hi Res Graphics

135

Machine Code Applications for the Spectrum

62735 JR Z,SDIFEB

6280 CF moo

6285 RET NZ

6290 SDIFB ADD HL,HL

6295 LD (DY) ,HL.

S00 SRA H

63205 RR L.

6310 L.D (OLDDY) ,HL

6315 LD HL., (DX)

6320 ADD HL,HL

6325 LD (DX) , HL.

635350 SRA H

6335 RR L

6340 L.D (OL.DDX) , HL

6345 JR SDIFH

Operation of PLINE

As written, PLINE expects four value parameters in the REM statement,

specifying the X,, Y, and X,, Y, points between which the line is to be

drawn/plotted. These values are collected by OPARS and loaded without

checking for validity into BC and DE.

XLINE

XLINE is another entry into the routine used by DRAWL, see below,

which draws a series of lines. B, C, D, E are loaded into the MS bytes of X,,

Y,, X, and Y, and the LS bytes are cleared. Observe carefully how the

storage is arranged and do not disturb otherwise more instructions will be

needed.
X, and X, are loaded into the low order bytes of HL and BC, the high

order bytes are zero and DX is a 16 bit signed value formed from X,—X,;
the high order byte is either zero or all 1s.

Similarly DY is set up from Y,—Y,. The subroutine SDIFF makes the
values of DX and DY as large as possible but not more than one quarter of

a pixel step and puts the vaues in OLDDX and OLDDY.

NPOIN

Here the next point is plotted. BC (and DE) are loaded with the coordinates

Y in B, X in C and PLOT called. INVPT, which may be an OR or XOR

instruction, modifies the contents of the display buffer. X, and Y,, as 16 bit

numbers, are incremented by the fractional values on OLDDX and

OLDDY until either the new X, or Y, differs from the old as stored in DE.

136

Chapter 14 Hi Res Graphics |

Figure 14.1 |

LINE TO BE DRAWN

IF THE LINE PASSES THROUGH A PIXEL THEN THE PIXEL |S PLOTTED e

137

Machine Code Applications for the Spectrum

Flowchart 14.1

X LINE PLINE

B<x,
C<Y,\(VALUE PARAMETERS

é D<xX, (WITHOUT CHECKS)
E<yY,

LOAD X@, YO, X1 AND Y1
SET UP 0X AND DY

SET UP OLDDX AND OLDDY

SET UP BC AND DE

[Esai

PLOT OR UNPLOT POINT (NEXT POINT ON LINE)

TEST FOR LAST POINT

ALL DONE

INCREMENT X@ BY OLDDX
INCREMENT Y BY OLDDY

138

Chapter 14 Hi Res Graphics

This newly computed point is now plotted and so on until the plotted point

coincides with X,, Y, at which point the subroutine NPG returns with the
Z flag set.

SDIFF

This happened fairly piecemeal and can be much improved.

DX and DY can be shifted left as long as their MS bytes remain either all

Os or all 1s and then right two places.

Now we can draw aline between two points. You probably won’t use it at

all because the next stage is more interesting.

Listing 14.2

6350 DRAWL CALL OFARS
6355 L.D HL, (SFARO)

6360 CALL GVAL®6
S365 RET C

&370 LD B,A

6375 CALL GVALS
6380 RET C

6385 LD C,A

390 DRNXF CALL GVAL8

6395 RET C

6400 LD D,A

6405 CALL GYVALS

6410 RET C

6415 LD E,A

6420 FUSH HL

6425 CALL XLINE

6430 FOF HL

6435 FUSH DE

6440 FOF BC

6445 JR DRNXF

6450 GVALS FUSH EBC

6455 PUSH DE

6460 NEY LD A, (HL)

6465 INC HL
6470 CFE fe tb beta

6475 JR Z,JRCX

6480 CF ee

64835 JR Z,JRVX

6490 SUR "oO"

6495 LD B,A

139

Machine Code Applications for the Spectrum

6500 LD A, (BYTEYV)

6505 SLA A

6510 SLA A

6515 LD C,A

6520 L.D A, (BYTEY)

6525 ADD C

6530 SLA A

6535 ADD &B

6540 LD (BYTEV) ,A

S45 JR NBY

6550 JRVX L.D A, (BYTEYV)

6555 LD BA

6560 L.D A,O

6565 LD (BYTEY) ,A

6570 L.D A,E

6575 OF A

6580 FOF DE

6585 FOF BC

6590 RET

6595 JRCX SCF

6600 FOF DE

6405 FOF BC

6410 RET

6615 BYTEV DEFB ©

DRAWL: Draw a list of lines

DRAWL has but one parameter, a string whose contents is a list of digits
and commas which are interpreted as being X, Y pairs and the routine
draws from pair | to pair 2 to pair 3 and so on to the end of the list. Note
again that there are no validity checks on the sizes of the values except that
GVAL8 only passes the LS 8 bytes of whatever value it finds; these checks
can be inserted if you need them.

OPARS collects one string parameter and then GVALB8 recovers byte
values from the string in a very primitive manner to load C, B, E, D for the
call of XLINE to draw a line from BC to DE.

DE is transferred into DE and DE loaded with the next point position
and the line BC to DE drawn; the process continues till GVAL8 exits with
the carry flag set as a result of the exhaustion of the data string.

GVAL8

This is entered with HL pointing into the parameter string; A is loaded with
the next character which is assumed to be:

140

Chapter 14 Hi Res Graphics

Flowchart 14.2

DRAWL.

COLLECT HEAD ADDRESSES
j OPARS OF STRING

HL= SPAR® HLPOINTS TO FIRST BYTE

ELA

| X LINE DRAW FROM
BCTO DE

BC= DE

STORE BC + DE

A= (HL) READ BYTE FROMSITRING
+1 MOVE TO NEXT BYTE

YES END OF STRING
SET Cy FLAG

Ala"
B=A A= BYTEV

BYTEV=BYTEV #10+B BYTEV = @ CLEAR Cy FLAG

N.B. THE STRING IS ASSUMED
TO BE WHOLLY CORRECT
THERE ARE NO CHECKS FOR
OVERFLOW OR NON DIGITS

141

Machine Code Applications for the Spectrum

a’’ marking the end of the string,
or a, marking the end of a value
or a digit. Non digits are not rejected but macerated.

BYTEV: BYTe EValuated

This is formed by shifting and adding to multiply by 10 and then adding in
the binary value of the character, assumed to bea digit. There are no checks
and the process continues till a comma is read.
Now we can draw lines what about undrawing them?
This is not too difficult. Change the OR (HL) at INVPT (invert plot) to

XOR (HL) and all will be well so long as we retrace our steps precisely.
Since there are, or may be, many points where this change is to be made the
subroutine IVERT contains what amounts to alist of bytes which are to be
changed. Repeated calls of IVERT change backwards and forwards; for
those of us who get lost there is SVERT which sets all such options to OR
for draw.

Listing 14.3

6620 IVERT LD Aly CINVET)
6625 LD B,A
5630 LD A, (CHNGE)
6635 LD CINVFT) ,A
6640 LD CINVRX) 5A
5645 LD A,B
6650 LD (CHNGE) ,A
4635 RET
6660 CHNGE XOR (HL)
6465 SVERT LD A, CINVFT)
6470 LD BA
6475 LD A, (XOROF)
6480 CF OB
6685 RET NZ
6490 CALL IVERT
6495 RET
6700 XOROF XOR (HL)

MOVEC

This move cursor routine operates by plotting and unplotting a diamond of
points. For faster movement you must either increment the cursor position
by more than one pixel step or flit from tile to tile.

142

Chapter 14 Hi Res Graphics

The basis is an IFKEY call which operates as follows:

5,6,7 & 8 keys move the cursor in the obvious directions
sets slow movement

sets fast movement

sets single step movement
causes the routine to exit, and yield up the cursor position. These
keys are all in lower case.

Ta x HY

A call LET L = USR... assigns to L, when the p key is operated, the
current cursor position which may be unravelled by the BASIC program;
prolonged depression of the key causes repeated outputs of the same
position. On the first call the cursor is positioned near centre screen but
repeated calls pick up the cursor from its last known position.

Listing 14.4

4705 MOVEC CALL SVERT
6710 CALL CURSK
6715 CALL IVERT
6720 MFAST LD Ay i
6725 LD (23561),A
6730 LD (23562) ,A
6725 CIFEE CALL IFEEY
&740 DEFER "3"
6745 JF MRGHT
67350 DEFER "3"
6735 JF MLEFT
&74O DEFR "7"
6765 JF MUPUP
6770 DEFE "6"
6775 JF MDOWN
&780 DEFB "p"
6785 JF MEXIT
6790 DEFB ""
6795 JF MFAST
6800 DEFB "s"
6805 JF MSLOW
46810 DEFE ‘yx "
6815 JF MSTEF
4820 NOF
6825 MSTEF LD A255
6830 LD (23561) ,A

143

Machine Code Applications for the Spectrum

6835

6840

6845

6850

6855

6860

6865

6870

6875

6880

6885

6890

5995

S900

6905

6910

6915

6920

6925

5930

6935

6940

6945

6950

6955

6960

6965

6970

6975

6980

6985

6990

6995

7OOO

7005

7OLO

7O1S
7O2O

7025
7ORO

7OR5

7O4O

7045

7OSO

144

MFASU

MSLOW

MRGHT
MRL 1

MLEF T
MRLA

MUPUF
MUPL 4

MDOWN
MDWNA

CURSX
CURSY

CIFEF

FLOA

FLOE

FLOC

FPLOD

FLOAT

DEFEB
DEFB
DEFEB
DEFR
DEFB
DEFB
DEFW

(23562) ,A
CIFKE
A,10
MFASU
A, (CURSX)
A
293
Z,MRLA
(CURSX) ,A
CIFEF
A, (CURSX)
A

Z MRL
(CURSX) ,A
CIFEF
A, (CURSY)
A

Z,MDWNA
(CURSY) ,A
CIFEF
A, (CURSY)
A
1988
Z,MUFLA4
(CURSY) ,A
CIFEF
125
88
cross
IVERT
CURSR
IVERT
CIFKE
254
254
254
+2
+2
+2
+2
254
QO

7O3S

7060

7965

7O70

7O735
7O80

7985S

7O90

7O9S

7100

7105

7110

7115

7120

7125

7130

7135

7140

7145

7150

71355

7160

7165

7170

7175

7180

7185

7190

7195

7200

7205

7219

7215

7220

229

7230

Tea

7240

7245

7250

7255

7260

PLOBT
FLOCT
FLODT
CURSR

CROSS

XPLOT
INVRX

MEXIT

DEFW ©
DEFW ©

LD BC, (CURSX)
LD HL, (PLOA)
ADD HL,BC
LD (PLOAT) HL
LD HL, (PLOB)
ADD HL,BC
LD (PLOBT) ,HL
LD HL, (PLOC)
ADD HL,BC
LD (PLOCT),HL
LD HL, (FLOD)
ADD HL,BC
LD (PLODT) ,HL
CALL CRASS
RET
LD BC, (FLODT)
CALL XPLOT
LD BC, (PLOBT?
CALL XPLOT
LD BC, (PLOAT)
CALL XPLOT
LD BC, (PLOCT)
CALL XPLOT
RET
CALL PLOT
OR (HL)
LD (HL),A
RET
CALL SVERT
POP IX
FOP HL
POP DE
FOF BC
LD BC, (CURSX)
LD = A,S
LD (23562),A
LD A,35
LD (23561),A
JP TRAT#

Chapter 14 Hi Res Graphics

145

Machine Code Applications for the Spectrum

Operation of MOVEC

The routine is so simple that by now you should not need a flow diagram

but be able to work directly from the listing.

SVERT sets the plotting routine to a known state and then the Spectrum

variables REPDEL and REPPER are set to their minimum values to give

the fastest possible movement and the initial cursor position is plotted by a

call on CURSR. IVERT is then called so that the next call will unplot the

cursor diamond before plotting the second cursor position, this gives free

non streaking movement.

The routine IFKEY now waits until a lower case menu key is read; the

cursor keys 5, 6, 7, 8 cause jumps to MLEFT, MRGHT, MUPUP and

MDOWN where the cursor position bytes, CURSX and CURSY are

modified appropriately and then prevented from running off the screen;

the old position is unplotted and the new plotted before the return to

CIFKE for the next key operation.

The x, s, and f keys arrange for REPPER to be loaded with the

appropriate values. Note here that one pixel vertically covers three

television scan lines.

Other details

PLOA, PLOB, PLOC, and PLOD define the four diamond points with

respect to the cursor position so that the actual cursor plot points may be

obtained by the addition of CURSX, considered with CURSY, as a two

byte value to these four points. These additions give the points PLOAT,

PLOBT, PLOCT, and PLODT which are then plotted/unplotted by

CROSS and XPLOT (according to the state of INVRX which is set by
IVERT or SVERT).

When p is pressed, the routine exits through MEXIT which restores all

the registers, except BC which it sets to the CURSOR position. As is usual

with my routines the positions of byte/word declarations is important.

DRAWA: Draw Array

With this subroutine and MOVEC you can build a simple drawing

program as sketched out in Listing 14.5b.

DRAWL looks for its data as point values in a REM parameter list.

DRAWA isa variant on the same theme but this time the data is to be found

in a two dimensional byte array which must be defined as:

DIM ?$(..., 2)

where ? is any suitable array reference and ... is as large as need be. The

character pair ?$(p,1) and ?$(p,2) contain the x and y plot values for the

point p as one byte values. If the y value is off screen the point is omitted;

146

Chapter 14 Hi Res Graphics

this enables a line sequence to be broken as required. The insertion of the off screen marker is a matter of convenience.

Listing 14.5a

7245 DRAWA CALL. FPCALL
Party L.D HL, (PARMO)
7275 LD (DPL+1) ,HL
7e28O DEL LD A, (DPL+1)
7285 AND 128+64+22
F290 CF 128+64
FERS JF Z2,DL1
7200 ERX40 Lp DE ,40
FSO CALL. ERREX
7310 Dit L.D HL, (DFL+13
7315 INC HL
FS20 L.D (DPLB+2) , HL
7325 DELLE LD BC, (DFLA+23)
a INC HL
33 INC HL

7FS4Q LD A, CHL)
734s CF 2
735Q JR Z,DL2
73355 ERX41 Lp DE,41
7F3GQ CALL ERREX
7365 DL? INC HL
PS7O INC HL
F375 INC HL
7380 L.D A, CHL)
7385 CF =
F39Q dR NZ, ERX42
F3ERS INC HL
F4OQ L.D A, CHL)
7405) CF o
7410 JR NZ ,ERX42
74s INC HL
7430 PUSH HL.
74235 L.D HL, -6
7430 ADD HL,BC
74S FUSH HL.
7440 FOF BC
744s FOF HL
7450 NXPFR LD (DFLCO+2) ,HL

147

Machine Code Applications for the Spectrum

7455 INC HL
7440 INC HL
7465 LD (DPLD+2) ,HL
7470 DEC BC

7475 DEC BC
7480 BIT 7,5
7485 RET NZ
7490 FUSH BC
7495 PUSH HL
7500 DPLC LD BC, (DPLC+2)
7505 LD A,E
7510 LD B,C
7515 LD 46C,A
7520 DFLD LD DE, (DPLD+2)
7525 LD” -A,D
7530 LD D,E
7535 LD E,A
7540 LD A,E
7545 AND 128+44
7550 CF =. 128+64
7555 JR Z,EXT
7560 LD A,c
7565 AND 128+64
7570 CP = 128+64
7575 JR -Z,EXT
7580 CALL XLINE
7585 EXT POF HL
7HPO FOF BC
7595 JR NXFEPR
7600 ERX42 LD DE,42
7605 CALL ERREX

Listing 14.5b

30 LET b=250
41 DIM k¥(b,2)
42 FOR x=1 TO b
45 LET k#(x,1)= CHR# 255
44 LET k#(x,2)= CHR# 255
45 NEXT x
50 LET keo
51 LET ol =0

oo LET 1= USR MaVeEC

Chapter 14 Hi Res Graphics

54 REM read cursor postian
56 FRINT AT 0,0;" "; PRINT AT O,
Os;l: PORE 23560,255
S7 [IF l=al THEN LET 165535

98 LET k=k+1

59 LET k#(k,2)= CHR# INT (1/256)
60 LET k#(k,1)= CHR INT (1-256%¢(INT (17
2uO)))

61 IF k=1 THEN GO TO 58
62 LET m= USR drawa

63 REM k#¥():
64 LET ol=1
65 FRINT AT 0O,43;k

66 GO TO Ss

Operation of DRAWA

PCALL collects the parameter REM statement and the first parameter

only is used. It is checked to be a character array exactly as specified; error

40 if not a character array, error 41 if not two dimensional and error 42 if

the second dimension is not two.

At NXPPR the next (or first) point pair is obtained.

HL points to the first byte pair, DPLC is a computed load instruction,

HL is moved on two bytes and DPLD is computed to load the next pair into

DE. This will be the first byte pair next time round.

The byte pairs BC and DE must be swapped around for the call of

XLINE. The swapping could be omitted but then the point pairs in the

array parameter would need to be reversed and this is not the normal

convention.

BC and DE, once set up, are checked to ensure that they are both on

screen. If either is off the screen the line drawing routine XLINE is omitted

and the next point pair is obtained for as long as data remains as tested for

by BC greater than zero.

BASIC drawing program

This program using only MOVEC and DRAWA routines enables the

drawing of quite complex figures. The keys operate as specified for

MOVEC; ‘p’ causes the cursor position to be transferred into 1 and hence

to the kth slot of k$() , a repeated point causes the off screen marker to be

inserted and the cursor may then be moved to the head of the next desired

line.

I leave you with the problem of how to break out of the drawing routine

so that you can save k$(). Hint: you might reserve the bottom of the

screen for a menu of some sort.

149

Machine Code Applications for the Spectrum

Flowchart 14.3

DRAWA

COMPUTE LOAD BG WITH LENGTH

2"4 DIMENSION
NOT 2

SET BC = N° OF DATA BYTES -1
ERROR 42.

HL POINTS TO FIRST BYTE.

(HL POINTS TO NEXT BYTE PAIR) (orn

COMPUTE LD BC INSTRUCTION
FOR FIRST POINT DATA - DPLC
COMPUTE LD DE INSTRUCTION
FOR SECOND POINT DATA -DPLD
DECREMENT DATA BYTE COUNTER

LOAD BC
EXCHANGE BYTES FOR XLUNE POINT X,Y,

POINT X,Y,

RESTORE HL, BC

150

Chapter 14 Hi Res Graphics

Synopsis

DRAWL allows you to draw a series of connected lines from point 1 to
point 2 to point 3... These points are specified as x, y pairs in the REM
parameter statement which may be of any length, eg REM: ‘‘x1, yl, x2, y2,
x3, y3, x4, y4,... xn, yn,’’.

DRAWA is similar to DRAWL but the data should be supplied in a
character array of xy pairs. Points outside the display area are not plotted
so lines may be broken by inserting an ‘off screen’ point in the array.
MOVEC uses the 5, 6, 7, 8 keys to move a cursor around the screen. The

‘p’ key causes the routine to exit with the current position of the cursor; the
x, Sand f keys allow single step, slow and fast cursor movement.
A BASIC drawing program is listing in Listing 14.4; this is for you to

elaborate as you wish.

151

CHAPTER 15

Miscellaneous

Here are some tit-bits which are nice to know or think about but do not

warrant a chapter to themselves.

BCD or Binary Coded Decimal

A form of number representation and arithmetic, believed to be of

American origin and dubious parentage. It enabled a salesman to say toa

prospective victim: ‘‘‘but our machine can do decimal arithmetic — you

shouldn’t bother with one of theirs. Their’s can only do (nasty,

complicated, difficult) binary’’’.

Each decimal digit can be represented by four bits with the values 8, 4, 2,

1 in 8421 BCD. (There is another form 4421 BCD). The Z80 chip will

handle BCD arithmetic at two digits per byte if, after each addition or

subtraction you insert a DAA operation (Decimal Arithmetic Adjust) and

write a special number print routine.

I regard the presence of BCD within a machine as something best

overlooked; however, many pieces of electronic equipment do make

available BCD coded signals, four wires per decimal read out digit, so that

they may be interfaced with computer systems.

Modifications

All I have been able to do, in this book, is point you in the proper direction.

No book is ever going to solve all your problems for you, but by way of

illustration I have included some code extras which I leave you to

understand.

Listing 15.1

7610 DEMOL CALL OFARS
7615 CALL FCALL.

7620 CALL FIDL1I
7625 JF SATTR+3
7630 FIDLi LD HL, (FARMO)

7635 LD BC ,3

153

Machine Code Applications for the Spectrum

7464Q ADD HL,BC

7645 L.D DE , VF ARO+8

7650 LDI

76585 RET

7660 DEMOS CALL FCALL

7465 CALL. FIDL?

7670 JF SATTR+S

7675 FIDLS LD HL, (FARMO)

7680 L.D BRC ,8

7685 ADD HL,BC

7690 L.D DE , VF ARO

7695 CALL LDFR
77OO CALL. LDFR

77OS CALL LDFF

F7FAO CALL LDFER

7715 CALL. LDFR

7720 RET

77295 LDER LDI
7730 LD BC, 4

77AS ADD HL, BC

774AQ INC DE

7745S RET

7750 END

DEMO1

This enters SATTR after the call of OPARS and PCALL. The REM

statement it expects is:

REM k: 0, 0, 15, 7,

where k is an (integer) attribute and the constants are a tile region
descriptor.

DEMO2

This also enters SATTR but its REM statement is:

REM @():

and the first five entries in a() are the tile descriptors and the required

attribute. These must all be integers.

Both use fiddle subroutines. Note how simple they are, work out how

they operate, and have fun doing your own.

154

Chapter 15 Miscellaneous

Multiple entry

With a large suite of programs a very nasty state of affairs can occur:

Program A outputs to display 1

Program B outputs to display 2

There is a common subroutine C, deep in the depths, doing the actual
display output.
A is outputting to the display when the display goes faulty and reports to

C, which outputs an error message to the operator and waits for the display
fault to be cleared.

Program B now outputs, using common subroutine C, and promptly
fouls everything up something rotten unless C is specially written to take
care of the problem.

The usual technique is first to estimate the number of multiple calls that
can be running at the same time, add 50% (or more) and then set up that
number of ‘pages’, perhaps using the IX register or its equivalent, for all
the workspace needed for one entry. Each cell is then allocated a ‘page’
which is released when that call terminates. If no room is available the
calling program must be informed so that it can wait or whatever until the
call can be accepted.

Recursion — or flying the Ouzlum bird

Recursion is the calling of a subroutine by itself. This may happen by
accident in large programs or be deliberate as a result of a quest for reduced
code or otherwise. It almost always demands large amounts of stack space.

Ordinarily, the call of itself will destroy the workspaces and return
address, so the subroutine must be deliberately designed to cope with this.
In some ways the problem is similar to that of Multiple Entry but here the
data is all stored on the stack for entry and a section of the stack is used for
workspace as well. The basic technique is illustrated in Figure 15.1. You
must ensure that the subroutine call on itself must be conditional and that
the condition fails so the subroutine can exit and thread its way back to the
outside world. If you do not the system, like the Ouzlum bird, will have a
nasty accident.

Notes on the machine code and the assembler

All the mnemonics for the operation codes are as standard. The ‘hidden’
operations, ie those for which the hardware operates but whose existence
is not official, are used.

The directive, assembler driving, mnemonics which are used are:

DEFB defines one byte as a decimal number or ASCII character
DEFS defines a series of BYTES by using an ASCII string

155

Machine Code Applications for the Spectrum

Flowchart 15.1

PUSHHL tinpyr p ETERS EMOR
Pare Be ONTO THE STACK ADDRESSES
PoP BC Jourrur PARAMETERS ee on

ibis a a ee
THEN IN RECUR aes ~.

PCS“ Cor
RECUR LD HL,-19 P t—‘“t;tSSC*r‘SS fs SPACE

ADD HL, SP LT C—C‘C‘id:
LD SP,HL— Paes
Lb Crit) aL, / neyo
LD 1X(TM1) aes

tesa pee as RETURN gS P_AT ENTRY
[BODY OF THE SUBROUTINE TO SUBROUTINE
| REFERENCING DATA VIA |X | B |
AND OFFSETS 8
| 5 U2 ucts
| conDITIONAL CALL ON RECUR

Z HIGH MEMORY
| MORE SvBROUTINE ADDRESSES

LD (TM4), IX pea

ee HLATM!) POINT 10 RETURN ADDRESS
LD BC,-19 Y REVERSIN
ADD HL, BO THE. INCREMENT
LD SP HL AT THE ENTRY
RET [TM1 1S SOME. WORKSPACE]

> IF THE CONDITIONAL CALL IS NOT MET SOON ENOUGH,
THE SYSTEM WILL CRASH

156

Chapter 15 Miscellaneous

DEFW defines a word of two bytes
END — specifies the end of the machine code
EQU requires a label, which is assigned the value in its address

field. This is usually the address of a Spectrum system
variable.

ORG specifies the head address of the assembled code

A single byte value may be specified by a decimal value (0O—255) or an
ASCII character enclosed within double quotes. Note that LD ad
loads A with the ASCII code for‘’’’.

Code — do’s and don’ts

Assemble the code to run at high memory addresses but leave enough room
between the end of your code and the Spectrum UDG pointer location for
the stack (see Spectrum manual Chapter 24 page 165) ie at the high address
end of WORKSP. In general you will be alright if the end of your code is at
about 63500 with a 48K machine.

Never use absolute addresses (numerical values) within your code.
Absolute addresses should only be used when addressing Spectrum
variables, (as detailed in Chapter 25 pages 173-176 of the manual) or
specific parts of the ROM.

Keep notes on all your programming, and your errors!
Make all names as mnemonic as you can.
Write straightforward programs whenever you can. (A program which

works is better than none at all, and few drivers ever look under the
bonnet.)

Have a very clear idea of what you want to do before you start.

157

INDEX

The select index is a guide to the main discussions of these subjects. The
figures given are for the first page(s) on which entries appear.

A

Absolute addresses 157

Addressing 29

Address computation 31

Animation 65

ASCII 11

Assembler 9,155

Attributes 36, 127

B

BASIC 125

BASIC convention(s) 80

BASIC Drawing Program 149

BCD (arithmetic) 153

Block Delete 119

BLOCK 123

Bytes (assigning values) 155

Cc

Clarity 157

CNXLN 123

Coding 157

COLM 48,50, 52

COMPF 101

Complexity 84

Computing instructions 71

Corruption 93

(see also STACK)

D

DAA instruction 153

Data 12, 23

Data structure(s) 26, 66

DEMO1 154

DEMO2 154

Display clearing 35

Djikstra 11

Documentation 12, 47, 84

DRAWA 146

Drawing 133

DRAWL 140

E

Environment 13

Errors 9, 12, 22, 66, 77

Error return(s) 77

F

Floating point 26, 97

Flow diagrams 9 and examples

FPcomparision 101

G

GVAL8 140

I

IFKEY 38

Instructions 12,15

Interface 65, 153

L

Learning 35

LINE 48,50

Loading 157

M

MAP$ 61

Modifications 153

MOVEC 142

Mnemonics 155

Moving cursor 142

Multiple entry routines 155

Multiple entries 107

159

Machine Code Applications for the Spectrum

N

Numbers

O

Octal

OPARS

P

Passing data

Passing parameters

PCALL

Pixel locating

PLINE

PLOT

PRIN

PRT8

R

Recursion

Reliability

RESLN

RPORT

S
SATTR
Scaling

SDIFF
SEBIT

Printed in England by Commercial Colour Press, London E7.

160

117

55
111

41, 52

80, 83, 107
84

Shifting

Simplicity
Size

Specification

Speed

SORTF

Sorting

Stack

SUPLN

T

Testability

U
Un-Drawing

vV

VAR$

Verification

WwW

Waiting

Waiting for key

Writing text

(displaying only)

x

XLINE

13,84, 111

9, 12, 35

119, 123

12

142

136

>

machine code
applications
for the ZX spectrum

expert machine code techniques

davidlaine |

Spectrum Machine Code Applications contains
advanced machine code routines to deal with
problems such as floating point numbers, output to the
screen and animated graphics. All the routines are
fully explained and annotated.

Through the application of the host of routines
presented the author explains how successful
machine code routines are written, tested and used in
practical applications.

This Is not another introductory book on machine code
but an insight into the way a professional machine
code programmer looks at the Spectrum.

Other Spectrum books by Sunshine

The Working Spectrum, by David Lawrence £5.95.
Acollection of practical application programs and
UiliTIES. \s8N 0946408 009

Spectrum Adventures, by Tony Bridge and Roy Carell.
£5.95. A = to playing and writing adventure games.
ISBN 0 946408 07 6

Master your ZX Microdrive, by Andrew Pennell. £6.95.
Programs, machine code and networking.

HAN
0946408173

NZ
SUNSHINE ee |
ISBN0.946408 17 3 : : . £6.95 ‘

DAVID
LAINE

~ SPECTRUM
M
A
C
H
I
N
E

C
O
D
E
 APPLICATIONS

SUNSHINE
SIZ

machine code
applications
for the ZX spectrum

expert machine code techniques

davidlaine

machine code
applications
for the ZX spectrum

expert machine code techniques

davidlaine |

Spectrum Machine Code Applications contains
advanced machine code routines to deal with
problems such as floating point numbers, output to the)
screen and animated graphics. All the routines are
fully explained and annotated. {

Through the application of the host of routines f
presented the author explains how successful t
machine code routines are written, tested and used in
practical applications.

This is not another introductory book on machine code
but an insight into the way a professional machine
code programmer looks at the Spectrum.

Other Spectrum books by Sunshine

The Working Spectrum, by David Lawrence £5.95.
Acollection of practical application programs and
UFIIITIES. san 0946408 009 :

Spectrum Adventures, by Tony Bridge and Roy Carnell.
£5.95. A guide to playing and writing adventure games.
ISBN 0 946408 07 6

Master your ZX Microdrive, by Andrew Pennell. £6.95.
Programs, machine code and networking.

[| |
0946408173

NZ
SUNSHINE
IS8N0946408 17 3 £6.95

DAVID
LAINE

S
P
E
C
T
R
U
M

M
A
C
H
I
N
E

C
O
D
E

APPLICATIONS

SUNSHINE
—

